ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfv1 GIF version

Theorem f1ocnvfv1 5718
Description: The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfv1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → (𝐹‘(𝐹𝐶)) = 𝐶)

Proof of Theorem f1ocnvfv1
StepHypRef Expression
1 f1ococnv1 5436 . . . 4 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
21fveq1d 5463 . . 3 (𝐹:𝐴1-1-onto𝐵 → ((𝐹𝐹)‘𝐶) = (( I ↾ 𝐴)‘𝐶))
32adantr 274 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐹)‘𝐶) = (( I ↾ 𝐴)‘𝐶))
4 f1of 5407 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
5 fvco3 5532 . . 3 ((𝐹:𝐴𝐵𝐶𝐴) → ((𝐹𝐹)‘𝐶) = (𝐹‘(𝐹𝐶)))
64, 5sylan 281 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐹)‘𝐶) = (𝐹‘(𝐹𝐶)))
7 fvresi 5653 . . 3 (𝐶𝐴 → (( I ↾ 𝐴)‘𝐶) = 𝐶)
87adantl 275 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → (( I ↾ 𝐴)‘𝐶) = 𝐶)
93, 6, 83eqtr3d 2195 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → (𝐹‘(𝐹𝐶)) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 2125   I cid 4243  ccnv 4578  cres 4581  ccom 4583  wf 5159  1-1-ontowf1o 5162  cfv 5163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-sbc 2934  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171
This theorem is referenced by:  f1ocnvfv  5720  caseinl  7021  caseinr  7022  ctssdccl  7041  cc3  7167  iseqf1olemab  10366  cnrecnv  10787  fprodssdc  11464  ennnfonelemhf1o  12093  ennnfonelemex  12094  ennnfonelemrn  12099  ctinfomlemom  12107  isomninnlem  13542  iswomninnlem  13561  ismkvnnlem  13564
  Copyright terms: Public domain W3C validator