ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfv1 GIF version

Theorem f1ocnvfv1 5780
Description: The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfv1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → (𝐹‘(𝐹𝐶)) = 𝐶)

Proof of Theorem f1ocnvfv1
StepHypRef Expression
1 f1ococnv1 5492 . . . 4 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
21fveq1d 5519 . . 3 (𝐹:𝐴1-1-onto𝐵 → ((𝐹𝐹)‘𝐶) = (( I ↾ 𝐴)‘𝐶))
32adantr 276 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐹)‘𝐶) = (( I ↾ 𝐴)‘𝐶))
4 f1of 5463 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
5 fvco3 5589 . . 3 ((𝐹:𝐴𝐵𝐶𝐴) → ((𝐹𝐹)‘𝐶) = (𝐹‘(𝐹𝐶)))
64, 5sylan 283 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐹)‘𝐶) = (𝐹‘(𝐹𝐶)))
7 fvresi 5711 . . 3 (𝐶𝐴 → (( I ↾ 𝐴)‘𝐶) = 𝐶)
87adantl 277 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → (( I ↾ 𝐴)‘𝐶) = 𝐶)
93, 6, 83eqtr3d 2218 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → (𝐹‘(𝐹𝐶)) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148   I cid 4290  ccnv 4627  cres 4630  ccom 4632  wf 5214  1-1-ontowf1o 5217  cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226
This theorem is referenced by:  f1ocnvfv  5782  caseinl  7092  caseinr  7093  ctssdccl  7112  cc3  7269  iseqf1olemab  10491  cnrecnv  10921  fprodssdc  11600  ennnfonelemhf1o  12416  ennnfonelemex  12417  ennnfonelemrn  12422  ctinfomlemom  12430  ssnnctlemct  12449  mhmf1o  12866  isomninnlem  14817  iswomninnlem  14836  ismkvnnlem  14839
  Copyright terms: Public domain W3C validator