| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzmhm | Unicode version | ||
| Description: Apply a monoid homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 8-Sep-2025.) |
| Ref | Expression |
|---|---|
| gsummhm.b |
|
| gsummhm.z |
|
| gsummhm.g |
|
| gsummhm.h |
|
| gsummhm.m |
|
| gsummhm.n |
|
| gsummhm.k |
|
| gsummhm.f |
|
| Ref | Expression |
|---|---|
| gsumfzmhm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummhm.k |
. . . . 5
| |
| 2 | gsummhm.z |
. . . . . 6
| |
| 3 | eqid 2206 |
. . . . . 6
| |
| 4 | 2, 3 | mhm0 13344 |
. . . . 5
|
| 5 | 1, 4 | syl 14 |
. . . 4
|
| 6 | 5 | adantr 276 |
. . 3
|
| 7 | gsummhm.b |
. . . . . . 7
| |
| 8 | eqid 2206 |
. . . . . . 7
| |
| 9 | gsummhm.g |
. . . . . . 7
| |
| 10 | gsummhm.m |
. . . . . . 7
| |
| 11 | gsummhm.n |
. . . . . . 7
| |
| 12 | gsummhm.f |
. . . . . . 7
| |
| 13 | 7, 2, 8, 9, 10, 11, 12 | gsumfzval 13267 |
. . . . . 6
|
| 14 | 13 | adantr 276 |
. . . . 5
|
| 15 | simpr 110 |
. . . . . 6
| |
| 16 | 15 | iftrued 3579 |
. . . . 5
|
| 17 | 14, 16 | eqtrd 2239 |
. . . 4
|
| 18 | 17 | fveq2d 5587 |
. . 3
|
| 19 | eqid 2206 |
. . . . . 6
| |
| 20 | eqid 2206 |
. . . . . 6
| |
| 21 | gsummhm.h |
. . . . . 6
| |
| 22 | 7, 19 | mhmf 13341 |
. . . . . . . 8
|
| 23 | 1, 22 | syl 14 |
. . . . . . 7
|
| 24 | fco 5447 |
. . . . . . 7
| |
| 25 | 23, 12, 24 | syl2anc 411 |
. . . . . 6
|
| 26 | 19, 3, 20, 21, 10, 11, 25 | gsumfzval 13267 |
. . . . 5
|
| 27 | 26 | adantr 276 |
. . . 4
|
| 28 | 15 | iftrued 3579 |
. . . 4
|
| 29 | 27, 28 | eqtrd 2239 |
. . 3
|
| 30 | 6, 18, 29 | 3eqtr4rd 2250 |
. 2
|
| 31 | 9 | cmnmndd 13688 |
. . . . . . 7
|
| 32 | 31 | adantr 276 |
. . . . . 6
|
| 33 | simprl 529 |
. . . . . 6
| |
| 34 | simprr 531 |
. . . . . 6
| |
| 35 | 7, 8 | mndcl 13299 |
. . . . . 6
|
| 36 | 32, 33, 34, 35 | syl3anc 1250 |
. . . . 5
|
| 37 | 36 | adantlr 477 |
. . . 4
|
| 38 | 12 | ffvelcdmda 5722 |
. . . . 5
|
| 39 | 38 | adantlr 477 |
. . . 4
|
| 40 | 10 | adantr 276 |
. . . . 5
|
| 41 | 11 | adantr 276 |
. . . . 5
|
| 42 | 40 | zred 9502 |
. . . . . 6
|
| 43 | 41 | zred 9502 |
. . . . . 6
|
| 44 | simpr 110 |
. . . . . 6
| |
| 45 | 42, 43, 44 | nltled 8200 |
. . . . 5
|
| 46 | eluz2 9661 |
. . . . 5
| |
| 47 | 40, 41, 45, 46 | syl3anbrc 1184 |
. . . 4
|
| 48 | 1 | ad2antrr 488 |
. . . . 5
|
| 49 | simprl 529 |
. . . . 5
| |
| 50 | simprr 531 |
. . . . 5
| |
| 51 | 7, 8, 20 | mhmlin 13343 |
. . . . 5
|
| 52 | 48, 49, 50, 51 | syl3anc 1250 |
. . . 4
|
| 53 | 12 | ad2antrr 488 |
. . . . . 6
|
| 54 | simpr 110 |
. . . . . 6
| |
| 55 | fvco3 5657 |
. . . . . 6
| |
| 56 | 53, 54, 55 | syl2anc 411 |
. . . . 5
|
| 57 | 56 | eqcomd 2212 |
. . . 4
|
| 58 | 10, 11 | fzfigd 10583 |
. . . . . 6
|
| 59 | 12, 58 | fexd 5821 |
. . . . 5
|
| 60 | 59 | adantr 276 |
. . . 4
|
| 61 | coexg 5232 |
. . . . . 6
| |
| 62 | 1, 59, 61 | syl2anc 411 |
. . . . 5
|
| 63 | 62 | adantr 276 |
. . . 4
|
| 64 | plusgslid 12988 |
. . . . . . 7
| |
| 65 | 64 | slotex 12903 |
. . . . . 6
|
| 66 | 9, 65 | syl 14 |
. . . . 5
|
| 67 | 66 | adantr 276 |
. . . 4
|
| 68 | 64 | slotex 12903 |
. . . . . 6
|
| 69 | 21, 68 | syl 14 |
. . . . 5
|
| 70 | 69 | adantr 276 |
. . . 4
|
| 71 | 37, 39, 47, 52, 57, 60, 63, 67, 70 | seqhomog 10682 |
. . 3
|
| 72 | 13 | adantr 276 |
. . . . 5
|
| 73 | 44 | iffalsed 3582 |
. . . . 5
|
| 74 | 72, 73 | eqtrd 2239 |
. . . 4
|
| 75 | 74 | fveq2d 5587 |
. . 3
|
| 76 | 26 | adantr 276 |
. . . 4
|
| 77 | 44 | iffalsed 3582 |
. . . 4
|
| 78 | 76, 77 | eqtrd 2239 |
. . 3
|
| 79 | 71, 75, 78 | 3eqtr4rd 2250 |
. 2
|
| 80 | zdclt 9457 |
. . . 4
| |
| 81 | 11, 10, 80 | syl2anc 411 |
. . 3
|
| 82 | exmiddc 838 |
. . 3
| |
| 83 | 81, 82 | syl 14 |
. 2
|
| 84 | 30, 79, 83 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-1o 6509 df-er 6627 df-map 6744 df-en 6835 df-fin 6837 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-2 9102 df-n0 9303 df-z 9380 df-uz 9656 df-fz 10138 df-fzo 10272 df-seqfrec 10600 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-0g 13134 df-igsum 13135 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-mhm 13335 df-cmn 13666 |
| This theorem is referenced by: gsumfzmhm2 13724 |
| Copyright terms: Public domain | W3C validator |