ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzmhm Unicode version

Theorem gsumfzmhm 13416
Description: Apply a monoid homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 8-Sep-2025.)
Hypotheses
Ref Expression
gsummhm.b  |-  B  =  ( Base `  G
)
gsummhm.z  |-  .0.  =  ( 0g `  G )
gsummhm.g  |-  ( ph  ->  G  e. CMnd )
gsummhm.h  |-  ( ph  ->  H  e.  Mnd )
gsummhm.m  |-  ( ph  ->  M  e.  ZZ )
gsummhm.n  |-  ( ph  ->  N  e.  ZZ )
gsummhm.k  |-  ( ph  ->  K  e.  ( G MndHom  H ) )
gsummhm.f  |-  ( ph  ->  F : ( M ... N ) --> B )
Assertion
Ref Expression
gsumfzmhm  |-  ( ph  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) )

Proof of Theorem gsumfzmhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsummhm.k . . . . 5  |-  ( ph  ->  K  e.  ( G MndHom  H ) )
2 gsummhm.z . . . . . 6  |-  .0.  =  ( 0g `  G )
3 eqid 2193 . . . . . 6  |-  ( 0g
`  H )  =  ( 0g `  H
)
42, 3mhm0 13043 . . . . 5  |-  ( K  e.  ( G MndHom  H
)  ->  ( K `  .0.  )  =  ( 0g `  H ) )
51, 4syl 14 . . . 4  |-  ( ph  ->  ( K `  .0.  )  =  ( 0g `  H ) )
65adantr 276 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( K `  .0.  )  =  ( 0g `  H ) )
7 gsummhm.b . . . . . . 7  |-  B  =  ( Base `  G
)
8 eqid 2193 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
9 gsummhm.g . . . . . . 7  |-  ( ph  ->  G  e. CMnd )
10 gsummhm.m . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
11 gsummhm.n . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
12 gsummhm.f . . . . . . 7  |-  ( ph  ->  F : ( M ... N ) --> B )
137, 2, 8, 9, 10, 11, 12gsumfzval 12977 . . . . . 6  |-  ( ph  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
1413adantr 276 . . . . 5  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) ) )
15 simpr 110 . . . . . 6  |-  ( (
ph  /\  N  <  M )  ->  N  <  M )
1615iftrued 3565 . . . . 5  |-  ( (
ph  /\  N  <  M )  ->  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G
) ,  F ) `
 N ) )  =  .0.  )
1714, 16eqtrd 2226 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  .0.  )
1817fveq2d 5559 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( K `  ( G  gsumg  F ) )  =  ( K `  .0.  ) )
19 eqid 2193 . . . . . 6  |-  ( Base `  H )  =  (
Base `  H )
20 eqid 2193 . . . . . 6  |-  ( +g  `  H )  =  ( +g  `  H )
21 gsummhm.h . . . . . 6  |-  ( ph  ->  H  e.  Mnd )
227, 19mhmf 13040 . . . . . . . 8  |-  ( K  e.  ( G MndHom  H
)  ->  K : B
--> ( Base `  H
) )
231, 22syl 14 . . . . . . 7  |-  ( ph  ->  K : B --> ( Base `  H ) )
24 fco 5420 . . . . . . 7  |-  ( ( K : B --> ( Base `  H )  /\  F : ( M ... N ) --> B )  ->  ( K  o.  F ) : ( M ... N ) --> ( Base `  H
) )
2523, 12, 24syl2anc 411 . . . . . 6  |-  ( ph  ->  ( K  o.  F
) : ( M ... N ) --> (
Base `  H )
)
2619, 3, 20, 21, 10, 11, 25gsumfzval 12977 . . . . 5  |-  ( ph  ->  ( H  gsumg  ( K  o.  F
) )  =  if ( N  <  M ,  ( 0g `  H ) ,  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) ) )
2726adantr 276 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  ( H  gsumg  ( K  o.  F ) )  =  if ( N  <  M , 
( 0g `  H
) ,  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) ) )
2815iftrued 3565 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  if ( N  <  M ,  ( 0g `  H ) ,  (  seq M
( ( +g  `  H
) ,  ( K  o.  F ) ) `
 N ) )  =  ( 0g `  H ) )
2927, 28eqtrd 2226 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( H  gsumg  ( K  o.  F ) )  =  ( 0g
`  H ) )
306, 18, 293eqtr4rd 2237 . 2  |-  ( (
ph  /\  N  <  M )  ->  ( H  gsumg  ( K  o.  F ) )  =  ( K `
 ( G  gsumg  F ) ) )
319cmnmndd 13381 . . . . . . 7  |-  ( ph  ->  G  e.  Mnd )
3231adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  G  e.  Mnd )
33 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  x  e.  B )
34 simprr 531 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
y  e.  B )
357, 8mndcl 13007 . . . . . 6  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
3632, 33, 34, 35syl3anc 1249 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  G ) y )  e.  B )
3736adantlr 477 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) y )  e.  B )
3812ffvelcdmda 5694 . . . . 5  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  B
)
3938adantlr 477 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  -> 
( F `  x
)  e.  B )
4010adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  ZZ )
4111adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ZZ )
4240zred 9442 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  RR )
4341zred 9442 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  RR )
44 simpr 110 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  -.  N  <  M )
4542, 43, 44nltled 8142 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  <_  N )
46 eluz2 9601 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
4740, 41, 45, 46syl3anbrc 1183 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ( ZZ>= `  M )
)
481ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  K  e.  ( G MndHom  H ) )
49 simprl 529 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  x  e.  B )
50 simprr 531 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  y  e.  B )
517, 8, 20mhmlin 13042 . . . . 5  |-  ( ( K  e.  ( G MndHom  H )  /\  x  e.  B  /\  y  e.  B )  ->  ( K `  ( x
( +g  `  G ) y ) )  =  ( ( K `  x ) ( +g  `  H ) ( K `
 y ) ) )
5248, 49, 50, 51syl3anc 1249 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  ( K `  ( x
( +g  `  G ) y ) )  =  ( ( K `  x ) ( +g  `  H ) ( K `
 y ) ) )
5312ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  ->  F : ( M ... N ) --> B )
54 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  ->  x  e.  ( M ... N ) )
55 fvco3 5629 . . . . . 6  |-  ( ( F : ( M ... N ) --> B  /\  x  e.  ( M ... N ) )  ->  ( ( K  o.  F ) `  x )  =  ( K `  ( F `
 x ) ) )
5653, 54, 55syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  -> 
( ( K  o.  F ) `  x
)  =  ( K `
 ( F `  x ) ) )
5756eqcomd 2199 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  -> 
( K `  ( F `  x )
)  =  ( ( K  o.  F ) `
 x ) )
5810, 11fzfigd 10505 . . . . . 6  |-  ( ph  ->  ( M ... N
)  e.  Fin )
5912, 58fexd 5789 . . . . 5  |-  ( ph  ->  F  e.  _V )
6059adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  F  e.  _V )
61 coexg 5211 . . . . . 6  |-  ( ( K  e.  ( G MndHom  H )  /\  F  e.  _V )  ->  ( K  o.  F )  e.  _V )
621, 59, 61syl2anc 411 . . . . 5  |-  ( ph  ->  ( K  o.  F
)  e.  _V )
6362adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( K  o.  F )  e.  _V )
64 plusgslid 12733 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
6564slotex 12648 . . . . . 6  |-  ( G  e. CMnd  ->  ( +g  `  G
)  e.  _V )
669, 65syl 14 . . . . 5  |-  ( ph  ->  ( +g  `  G
)  e.  _V )
6766adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( +g  `  G )  e. 
_V )
6864slotex 12648 . . . . . 6  |-  ( H  e.  Mnd  ->  ( +g  `  H )  e. 
_V )
6921, 68syl 14 . . . . 5  |-  ( ph  ->  ( +g  `  H
)  e.  _V )
7069adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( +g  `  H )  e. 
_V )
7137, 39, 47, 52, 57, 60, 63, 67, 70seqhomog 10604 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( K `  (  seq M ( ( +g  `  G ) ,  F
) `  N )
)  =  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) )
7213adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
7344iffalsed 3568 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  if ( N  <  M ,  .0.  ,  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) )  =  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) )
7472, 73eqtrd 2226 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  (  seq M ( ( +g  `  G ) ,  F ) `  N ) )
7574fveq2d 5559 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( K `  ( G  gsumg  F ) )  =  ( K `  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
7626adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( H  gsumg  ( K  o.  F
) )  =  if ( N  <  M ,  ( 0g `  H ) ,  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) ) )
7744iffalsed 3568 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  if ( N  <  M , 
( 0g `  H
) ,  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) )  =  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) )
7876, 77eqtrd 2226 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( H  gsumg  ( K  o.  F
) )  =  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) )
7971, 75, 783eqtr4rd 2237 . 2  |-  ( (
ph  /\  -.  N  <  M )  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) )
80 zdclt 9397 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  -> DECID  N  <  M )
8111, 10, 80syl2anc 411 . . 3  |-  ( ph  -> DECID  N  <  M )
82 exmiddc 837 . . 3  |-  (DECID  N  < 
M  ->  ( N  <  M  \/  -.  N  <  M ) )
8381, 82syl 14 . 2  |-  ( ph  ->  ( N  <  M  \/  -.  N  <  M
) )
8430, 79, 83mpjaodan 799 1  |-  ( ph  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2164   _Vcvv 2760   ifcif 3558   class class class wbr 4030    o. ccom 4664   -->wf 5251   ` cfv 5255  (class class class)co 5919   Fincfn 6796    < clt 8056    <_ cle 8057   ZZcz 9320   ZZ>=cuz 9595   ...cfz 10077    seqcseq 10521   Basecbs 12621   +g cplusg 12698   0gc0g 12870    gsumg cgsu 12871   Mndcmnd 13000   MndHom cmhm 13032  CMndccmn 13357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-1o 6471  df-er 6589  df-map 6706  df-en 6797  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-igsum 12873  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mhm 13034  df-cmn 13359
This theorem is referenced by:  gsumfzmhm2  13417
  Copyright terms: Public domain W3C validator