| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzmhm | Unicode version | ||
| Description: Apply a monoid homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 8-Sep-2025.) |
| Ref | Expression |
|---|---|
| gsummhm.b |
|
| gsummhm.z |
|
| gsummhm.g |
|
| gsummhm.h |
|
| gsummhm.m |
|
| gsummhm.n |
|
| gsummhm.k |
|
| gsummhm.f |
|
| Ref | Expression |
|---|---|
| gsumfzmhm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummhm.k |
. . . . 5
| |
| 2 | gsummhm.z |
. . . . . 6
| |
| 3 | eqid 2196 |
. . . . . 6
| |
| 4 | 2, 3 | mhm0 13126 |
. . . . 5
|
| 5 | 1, 4 | syl 14 |
. . . 4
|
| 6 | 5 | adantr 276 |
. . 3
|
| 7 | gsummhm.b |
. . . . . . 7
| |
| 8 | eqid 2196 |
. . . . . . 7
| |
| 9 | gsummhm.g |
. . . . . . 7
| |
| 10 | gsummhm.m |
. . . . . . 7
| |
| 11 | gsummhm.n |
. . . . . . 7
| |
| 12 | gsummhm.f |
. . . . . . 7
| |
| 13 | 7, 2, 8, 9, 10, 11, 12 | gsumfzval 13060 |
. . . . . 6
|
| 14 | 13 | adantr 276 |
. . . . 5
|
| 15 | simpr 110 |
. . . . . 6
| |
| 16 | 15 | iftrued 3569 |
. . . . 5
|
| 17 | 14, 16 | eqtrd 2229 |
. . . 4
|
| 18 | 17 | fveq2d 5563 |
. . 3
|
| 19 | eqid 2196 |
. . . . . 6
| |
| 20 | eqid 2196 |
. . . . . 6
| |
| 21 | gsummhm.h |
. . . . . 6
| |
| 22 | 7, 19 | mhmf 13123 |
. . . . . . . 8
|
| 23 | 1, 22 | syl 14 |
. . . . . . 7
|
| 24 | fco 5424 |
. . . . . . 7
| |
| 25 | 23, 12, 24 | syl2anc 411 |
. . . . . 6
|
| 26 | 19, 3, 20, 21, 10, 11, 25 | gsumfzval 13060 |
. . . . 5
|
| 27 | 26 | adantr 276 |
. . . 4
|
| 28 | 15 | iftrued 3569 |
. . . 4
|
| 29 | 27, 28 | eqtrd 2229 |
. . 3
|
| 30 | 6, 18, 29 | 3eqtr4rd 2240 |
. 2
|
| 31 | 9 | cmnmndd 13464 |
. . . . . . 7
|
| 32 | 31 | adantr 276 |
. . . . . 6
|
| 33 | simprl 529 |
. . . . . 6
| |
| 34 | simprr 531 |
. . . . . 6
| |
| 35 | 7, 8 | mndcl 13090 |
. . . . . 6
|
| 36 | 32, 33, 34, 35 | syl3anc 1249 |
. . . . 5
|
| 37 | 36 | adantlr 477 |
. . . 4
|
| 38 | 12 | ffvelcdmda 5698 |
. . . . 5
|
| 39 | 38 | adantlr 477 |
. . . 4
|
| 40 | 10 | adantr 276 |
. . . . 5
|
| 41 | 11 | adantr 276 |
. . . . 5
|
| 42 | 40 | zred 9451 |
. . . . . 6
|
| 43 | 41 | zred 9451 |
. . . . . 6
|
| 44 | simpr 110 |
. . . . . 6
| |
| 45 | 42, 43, 44 | nltled 8150 |
. . . . 5
|
| 46 | eluz2 9610 |
. . . . 5
| |
| 47 | 40, 41, 45, 46 | syl3anbrc 1183 |
. . . 4
|
| 48 | 1 | ad2antrr 488 |
. . . . 5
|
| 49 | simprl 529 |
. . . . 5
| |
| 50 | simprr 531 |
. . . . 5
| |
| 51 | 7, 8, 20 | mhmlin 13125 |
. . . . 5
|
| 52 | 48, 49, 50, 51 | syl3anc 1249 |
. . . 4
|
| 53 | 12 | ad2antrr 488 |
. . . . . 6
|
| 54 | simpr 110 |
. . . . . 6
| |
| 55 | fvco3 5633 |
. . . . . 6
| |
| 56 | 53, 54, 55 | syl2anc 411 |
. . . . 5
|
| 57 | 56 | eqcomd 2202 |
. . . 4
|
| 58 | 10, 11 | fzfigd 10526 |
. . . . . 6
|
| 59 | 12, 58 | fexd 5793 |
. . . . 5
|
| 60 | 59 | adantr 276 |
. . . 4
|
| 61 | coexg 5215 |
. . . . . 6
| |
| 62 | 1, 59, 61 | syl2anc 411 |
. . . . 5
|
| 63 | 62 | adantr 276 |
. . . 4
|
| 64 | plusgslid 12801 |
. . . . . . 7
| |
| 65 | 64 | slotex 12716 |
. . . . . 6
|
| 66 | 9, 65 | syl 14 |
. . . . 5
|
| 67 | 66 | adantr 276 |
. . . 4
|
| 68 | 64 | slotex 12716 |
. . . . . 6
|
| 69 | 21, 68 | syl 14 |
. . . . 5
|
| 70 | 69 | adantr 276 |
. . . 4
|
| 71 | 37, 39, 47, 52, 57, 60, 63, 67, 70 | seqhomog 10625 |
. . 3
|
| 72 | 13 | adantr 276 |
. . . . 5
|
| 73 | 44 | iffalsed 3572 |
. . . . 5
|
| 74 | 72, 73 | eqtrd 2229 |
. . . 4
|
| 75 | 74 | fveq2d 5563 |
. . 3
|
| 76 | 26 | adantr 276 |
. . . 4
|
| 77 | 44 | iffalsed 3572 |
. . . 4
|
| 78 | 76, 77 | eqtrd 2229 |
. . 3
|
| 79 | 71, 75, 78 | 3eqtr4rd 2240 |
. 2
|
| 80 | zdclt 9406 |
. . . 4
| |
| 81 | 11, 10, 80 | syl2anc 411 |
. . 3
|
| 82 | exmiddc 837 |
. . 3
| |
| 83 | 81, 82 | syl 14 |
. 2
|
| 84 | 30, 79, 83 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-addcom 7982 ax-addass 7984 ax-distr 7986 ax-i2m1 7987 ax-0lt1 7988 ax-0id 7990 ax-rnegex 7991 ax-cnre 7993 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-apti 7997 ax-pre-ltadd 7998 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6200 df-2nd 6201 df-recs 6365 df-frec 6451 df-1o 6476 df-er 6594 df-map 6711 df-en 6802 df-fin 6804 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-sub 8202 df-neg 8203 df-inn 8994 df-2 9052 df-n0 9253 df-z 9330 df-uz 9605 df-fz 10087 df-fzo 10221 df-seqfrec 10543 df-ndx 12692 df-slot 12693 df-base 12695 df-plusg 12779 df-0g 12946 df-igsum 12947 df-mgm 13025 df-sgrp 13071 df-mnd 13084 df-mhm 13117 df-cmn 13442 |
| This theorem is referenced by: gsumfzmhm2 13500 |
| Copyright terms: Public domain | W3C validator |