ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzmhm Unicode version

Theorem gsumfzmhm 13846
Description: Apply a monoid homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 8-Sep-2025.)
Hypotheses
Ref Expression
gsummhm.b  |-  B  =  ( Base `  G
)
gsummhm.z  |-  .0.  =  ( 0g `  G )
gsummhm.g  |-  ( ph  ->  G  e. CMnd )
gsummhm.h  |-  ( ph  ->  H  e.  Mnd )
gsummhm.m  |-  ( ph  ->  M  e.  ZZ )
gsummhm.n  |-  ( ph  ->  N  e.  ZZ )
gsummhm.k  |-  ( ph  ->  K  e.  ( G MndHom  H ) )
gsummhm.f  |-  ( ph  ->  F : ( M ... N ) --> B )
Assertion
Ref Expression
gsumfzmhm  |-  ( ph  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) )

Proof of Theorem gsumfzmhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsummhm.k . . . . 5  |-  ( ph  ->  K  e.  ( G MndHom  H ) )
2 gsummhm.z . . . . . 6  |-  .0.  =  ( 0g `  G )
3 eqid 2209 . . . . . 6  |-  ( 0g
`  H )  =  ( 0g `  H
)
42, 3mhm0 13467 . . . . 5  |-  ( K  e.  ( G MndHom  H
)  ->  ( K `  .0.  )  =  ( 0g `  H ) )
51, 4syl 14 . . . 4  |-  ( ph  ->  ( K `  .0.  )  =  ( 0g `  H ) )
65adantr 276 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( K `  .0.  )  =  ( 0g `  H ) )
7 gsummhm.b . . . . . . 7  |-  B  =  ( Base `  G
)
8 eqid 2209 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
9 gsummhm.g . . . . . . 7  |-  ( ph  ->  G  e. CMnd )
10 gsummhm.m . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
11 gsummhm.n . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
12 gsummhm.f . . . . . . 7  |-  ( ph  ->  F : ( M ... N ) --> B )
137, 2, 8, 9, 10, 11, 12gsumfzval 13390 . . . . . 6  |-  ( ph  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
1413adantr 276 . . . . 5  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) ) )
15 simpr 110 . . . . . 6  |-  ( (
ph  /\  N  <  M )  ->  N  <  M )
1615iftrued 3589 . . . . 5  |-  ( (
ph  /\  N  <  M )  ->  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G
) ,  F ) `
 N ) )  =  .0.  )
1714, 16eqtrd 2242 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  .0.  )
1817fveq2d 5607 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( K `  ( G  gsumg  F ) )  =  ( K `  .0.  ) )
19 eqid 2209 . . . . . 6  |-  ( Base `  H )  =  (
Base `  H )
20 eqid 2209 . . . . . 6  |-  ( +g  `  H )  =  ( +g  `  H )
21 gsummhm.h . . . . . 6  |-  ( ph  ->  H  e.  Mnd )
227, 19mhmf 13464 . . . . . . . 8  |-  ( K  e.  ( G MndHom  H
)  ->  K : B
--> ( Base `  H
) )
231, 22syl 14 . . . . . . 7  |-  ( ph  ->  K : B --> ( Base `  H ) )
24 fco 5465 . . . . . . 7  |-  ( ( K : B --> ( Base `  H )  /\  F : ( M ... N ) --> B )  ->  ( K  o.  F ) : ( M ... N ) --> ( Base `  H
) )
2523, 12, 24syl2anc 411 . . . . . 6  |-  ( ph  ->  ( K  o.  F
) : ( M ... N ) --> (
Base `  H )
)
2619, 3, 20, 21, 10, 11, 25gsumfzval 13390 . . . . 5  |-  ( ph  ->  ( H  gsumg  ( K  o.  F
) )  =  if ( N  <  M ,  ( 0g `  H ) ,  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) ) )
2726adantr 276 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  ( H  gsumg  ( K  o.  F ) )  =  if ( N  <  M , 
( 0g `  H
) ,  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) ) )
2815iftrued 3589 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  if ( N  <  M ,  ( 0g `  H ) ,  (  seq M
( ( +g  `  H
) ,  ( K  o.  F ) ) `
 N ) )  =  ( 0g `  H ) )
2927, 28eqtrd 2242 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( H  gsumg  ( K  o.  F ) )  =  ( 0g
`  H ) )
306, 18, 293eqtr4rd 2253 . 2  |-  ( (
ph  /\  N  <  M )  ->  ( H  gsumg  ( K  o.  F ) )  =  ( K `
 ( G  gsumg  F ) ) )
319cmnmndd 13811 . . . . . . 7  |-  ( ph  ->  G  e.  Mnd )
3231adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  G  e.  Mnd )
33 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  x  e.  B )
34 simprr 531 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
y  e.  B )
357, 8mndcl 13422 . . . . . 6  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
3632, 33, 34, 35syl3anc 1252 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  G ) y )  e.  B )
3736adantlr 477 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) y )  e.  B )
3812ffvelcdmda 5743 . . . . 5  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  B
)
3938adantlr 477 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  -> 
( F `  x
)  e.  B )
4010adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  ZZ )
4111adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ZZ )
4240zred 9537 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  RR )
4341zred 9537 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  RR )
44 simpr 110 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  -.  N  <  M )
4542, 43, 44nltled 8235 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  <_  N )
46 eluz2 9696 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
4740, 41, 45, 46syl3anbrc 1186 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ( ZZ>= `  M )
)
481ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  K  e.  ( G MndHom  H ) )
49 simprl 529 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  x  e.  B )
50 simprr 531 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  y  e.  B )
517, 8, 20mhmlin 13466 . . . . 5  |-  ( ( K  e.  ( G MndHom  H )  /\  x  e.  B  /\  y  e.  B )  ->  ( K `  ( x
( +g  `  G ) y ) )  =  ( ( K `  x ) ( +g  `  H ) ( K `
 y ) ) )
5248, 49, 50, 51syl3anc 1252 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  ( K `  ( x
( +g  `  G ) y ) )  =  ( ( K `  x ) ( +g  `  H ) ( K `
 y ) ) )
5312ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  ->  F : ( M ... N ) --> B )
54 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  ->  x  e.  ( M ... N ) )
55 fvco3 5678 . . . . . 6  |-  ( ( F : ( M ... N ) --> B  /\  x  e.  ( M ... N ) )  ->  ( ( K  o.  F ) `  x )  =  ( K `  ( F `
 x ) ) )
5653, 54, 55syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  -> 
( ( K  o.  F ) `  x
)  =  ( K `
 ( F `  x ) ) )
5756eqcomd 2215 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  -> 
( K `  ( F `  x )
)  =  ( ( K  o.  F ) `
 x ) )
5810, 11fzfigd 10620 . . . . . 6  |-  ( ph  ->  ( M ... N
)  e.  Fin )
5912, 58fexd 5842 . . . . 5  |-  ( ph  ->  F  e.  _V )
6059adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  F  e.  _V )
61 coexg 5249 . . . . . 6  |-  ( ( K  e.  ( G MndHom  H )  /\  F  e.  _V )  ->  ( K  o.  F )  e.  _V )
621, 59, 61syl2anc 411 . . . . 5  |-  ( ph  ->  ( K  o.  F
)  e.  _V )
6362adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( K  o.  F )  e.  _V )
64 plusgslid 13111 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
6564slotex 13025 . . . . . 6  |-  ( G  e. CMnd  ->  ( +g  `  G
)  e.  _V )
669, 65syl 14 . . . . 5  |-  ( ph  ->  ( +g  `  G
)  e.  _V )
6766adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( +g  `  G )  e. 
_V )
6864slotex 13025 . . . . . 6  |-  ( H  e.  Mnd  ->  ( +g  `  H )  e. 
_V )
6921, 68syl 14 . . . . 5  |-  ( ph  ->  ( +g  `  H
)  e.  _V )
7069adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( +g  `  H )  e. 
_V )
7137, 39, 47, 52, 57, 60, 63, 67, 70seqhomog 10719 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( K `  (  seq M ( ( +g  `  G ) ,  F
) `  N )
)  =  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) )
7213adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
7344iffalsed 3592 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  if ( N  <  M ,  .0.  ,  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) )  =  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) )
7472, 73eqtrd 2242 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  (  seq M ( ( +g  `  G ) ,  F ) `  N ) )
7574fveq2d 5607 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( K `  ( G  gsumg  F ) )  =  ( K `  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
7626adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( H  gsumg  ( K  o.  F
) )  =  if ( N  <  M ,  ( 0g `  H ) ,  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) ) )
7744iffalsed 3592 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  if ( N  <  M , 
( 0g `  H
) ,  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) )  =  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) )
7876, 77eqtrd 2242 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( H  gsumg  ( K  o.  F
) )  =  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) )
7971, 75, 783eqtr4rd 2253 . 2  |-  ( (
ph  /\  -.  N  <  M )  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) )
80 zdclt 9492 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  -> DECID  N  <  M )
8111, 10, 80syl2anc 411 . . 3  |-  ( ph  -> DECID  N  <  M )
82 exmiddc 840 . . 3  |-  (DECID  N  < 
M  ->  ( N  <  M  \/  -.  N  <  M ) )
8381, 82syl 14 . 2  |-  ( ph  ->  ( N  <  M  \/  -.  N  <  M
) )
8430, 79, 83mpjaodan 802 1  |-  ( ph  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 712  DECID wdc 838    = wceq 1375    e. wcel 2180   _Vcvv 2779   ifcif 3582   class class class wbr 4062    o. ccom 4700   -->wf 5290   ` cfv 5294  (class class class)co 5974   Fincfn 6857    < clt 8149    <_ cle 8150   ZZcz 9414   ZZ>=cuz 9690   ...cfz 10172    seqcseq 10636   Basecbs 12998   +g cplusg 13076   0gc0g 13255    gsumg cgsu 13256   Mndcmnd 13415   MndHom cmhm 13456  CMndccmn 13787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-1o 6532  df-er 6650  df-map 6767  df-en 6858  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-2 9137  df-n0 9338  df-z 9415  df-uz 9691  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-0g 13257  df-igsum 13258  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-mhm 13458  df-cmn 13789
This theorem is referenced by:  gsumfzmhm2  13847
  Copyright terms: Public domain W3C validator