ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzmhm Unicode version

Theorem gsumfzmhm 13888
Description: Apply a monoid homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 8-Sep-2025.)
Hypotheses
Ref Expression
gsummhm.b  |-  B  =  ( Base `  G
)
gsummhm.z  |-  .0.  =  ( 0g `  G )
gsummhm.g  |-  ( ph  ->  G  e. CMnd )
gsummhm.h  |-  ( ph  ->  H  e.  Mnd )
gsummhm.m  |-  ( ph  ->  M  e.  ZZ )
gsummhm.n  |-  ( ph  ->  N  e.  ZZ )
gsummhm.k  |-  ( ph  ->  K  e.  ( G MndHom  H ) )
gsummhm.f  |-  ( ph  ->  F : ( M ... N ) --> B )
Assertion
Ref Expression
gsumfzmhm  |-  ( ph  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) )

Proof of Theorem gsumfzmhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsummhm.k . . . . 5  |-  ( ph  ->  K  e.  ( G MndHom  H ) )
2 gsummhm.z . . . . . 6  |-  .0.  =  ( 0g `  G )
3 eqid 2229 . . . . . 6  |-  ( 0g
`  H )  =  ( 0g `  H
)
42, 3mhm0 13509 . . . . 5  |-  ( K  e.  ( G MndHom  H
)  ->  ( K `  .0.  )  =  ( 0g `  H ) )
51, 4syl 14 . . . 4  |-  ( ph  ->  ( K `  .0.  )  =  ( 0g `  H ) )
65adantr 276 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( K `  .0.  )  =  ( 0g `  H ) )
7 gsummhm.b . . . . . . 7  |-  B  =  ( Base `  G
)
8 eqid 2229 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
9 gsummhm.g . . . . . . 7  |-  ( ph  ->  G  e. CMnd )
10 gsummhm.m . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
11 gsummhm.n . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
12 gsummhm.f . . . . . . 7  |-  ( ph  ->  F : ( M ... N ) --> B )
137, 2, 8, 9, 10, 11, 12gsumfzval 13432 . . . . . 6  |-  ( ph  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
1413adantr 276 . . . . 5  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) ) )
15 simpr 110 . . . . . 6  |-  ( (
ph  /\  N  <  M )  ->  N  <  M )
1615iftrued 3609 . . . . 5  |-  ( (
ph  /\  N  <  M )  ->  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G
) ,  F ) `
 N ) )  =  .0.  )
1714, 16eqtrd 2262 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  .0.  )
1817fveq2d 5633 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( K `  ( G  gsumg  F ) )  =  ( K `  .0.  ) )
19 eqid 2229 . . . . . 6  |-  ( Base `  H )  =  (
Base `  H )
20 eqid 2229 . . . . . 6  |-  ( +g  `  H )  =  ( +g  `  H )
21 gsummhm.h . . . . . 6  |-  ( ph  ->  H  e.  Mnd )
227, 19mhmf 13506 . . . . . . . 8  |-  ( K  e.  ( G MndHom  H
)  ->  K : B
--> ( Base `  H
) )
231, 22syl 14 . . . . . . 7  |-  ( ph  ->  K : B --> ( Base `  H ) )
24 fco 5491 . . . . . . 7  |-  ( ( K : B --> ( Base `  H )  /\  F : ( M ... N ) --> B )  ->  ( K  o.  F ) : ( M ... N ) --> ( Base `  H
) )
2523, 12, 24syl2anc 411 . . . . . 6  |-  ( ph  ->  ( K  o.  F
) : ( M ... N ) --> (
Base `  H )
)
2619, 3, 20, 21, 10, 11, 25gsumfzval 13432 . . . . 5  |-  ( ph  ->  ( H  gsumg  ( K  o.  F
) )  =  if ( N  <  M ,  ( 0g `  H ) ,  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) ) )
2726adantr 276 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  ( H  gsumg  ( K  o.  F ) )  =  if ( N  <  M , 
( 0g `  H
) ,  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) ) )
2815iftrued 3609 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  if ( N  <  M ,  ( 0g `  H ) ,  (  seq M
( ( +g  `  H
) ,  ( K  o.  F ) ) `
 N ) )  =  ( 0g `  H ) )
2927, 28eqtrd 2262 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( H  gsumg  ( K  o.  F ) )  =  ( 0g
`  H ) )
306, 18, 293eqtr4rd 2273 . 2  |-  ( (
ph  /\  N  <  M )  ->  ( H  gsumg  ( K  o.  F ) )  =  ( K `
 ( G  gsumg  F ) ) )
319cmnmndd 13853 . . . . . . 7  |-  ( ph  ->  G  e.  Mnd )
3231adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  G  e.  Mnd )
33 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  x  e.  B )
34 simprr 531 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
y  e.  B )
357, 8mndcl 13464 . . . . . 6  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
3632, 33, 34, 35syl3anc 1271 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  G ) y )  e.  B )
3736adantlr 477 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) y )  e.  B )
3812ffvelcdmda 5772 . . . . 5  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  B
)
3938adantlr 477 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  -> 
( F `  x
)  e.  B )
4010adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  ZZ )
4111adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ZZ )
4240zred 9577 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  RR )
4341zred 9577 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  RR )
44 simpr 110 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  -.  N  <  M )
4542, 43, 44nltled 8275 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  <_  N )
46 eluz2 9736 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
4740, 41, 45, 46syl3anbrc 1205 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ( ZZ>= `  M )
)
481ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  K  e.  ( G MndHom  H ) )
49 simprl 529 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  x  e.  B )
50 simprr 531 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  y  e.  B )
517, 8, 20mhmlin 13508 . . . . 5  |-  ( ( K  e.  ( G MndHom  H )  /\  x  e.  B  /\  y  e.  B )  ->  ( K `  ( x
( +g  `  G ) y ) )  =  ( ( K `  x ) ( +g  `  H ) ( K `
 y ) ) )
5248, 49, 50, 51syl3anc 1271 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  ( K `  ( x
( +g  `  G ) y ) )  =  ( ( K `  x ) ( +g  `  H ) ( K `
 y ) ) )
5312ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  ->  F : ( M ... N ) --> B )
54 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  ->  x  e.  ( M ... N ) )
55 fvco3 5707 . . . . . 6  |-  ( ( F : ( M ... N ) --> B  /\  x  e.  ( M ... N ) )  ->  ( ( K  o.  F ) `  x )  =  ( K `  ( F `
 x ) ) )
5653, 54, 55syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  -> 
( ( K  o.  F ) `  x
)  =  ( K `
 ( F `  x ) ) )
5756eqcomd 2235 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  -> 
( K `  ( F `  x )
)  =  ( ( K  o.  F ) `
 x ) )
5810, 11fzfigd 10661 . . . . . 6  |-  ( ph  ->  ( M ... N
)  e.  Fin )
5912, 58fexd 5873 . . . . 5  |-  ( ph  ->  F  e.  _V )
6059adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  F  e.  _V )
61 coexg 5273 . . . . . 6  |-  ( ( K  e.  ( G MndHom  H )  /\  F  e.  _V )  ->  ( K  o.  F )  e.  _V )
621, 59, 61syl2anc 411 . . . . 5  |-  ( ph  ->  ( K  o.  F
)  e.  _V )
6362adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( K  o.  F )  e.  _V )
64 plusgslid 13153 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
6564slotex 13067 . . . . . 6  |-  ( G  e. CMnd  ->  ( +g  `  G
)  e.  _V )
669, 65syl 14 . . . . 5  |-  ( ph  ->  ( +g  `  G
)  e.  _V )
6766adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( +g  `  G )  e. 
_V )
6864slotex 13067 . . . . . 6  |-  ( H  e.  Mnd  ->  ( +g  `  H )  e. 
_V )
6921, 68syl 14 . . . . 5  |-  ( ph  ->  ( +g  `  H
)  e.  _V )
7069adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( +g  `  H )  e. 
_V )
7137, 39, 47, 52, 57, 60, 63, 67, 70seqhomog 10760 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( K `  (  seq M ( ( +g  `  G ) ,  F
) `  N )
)  =  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) )
7213adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
7344iffalsed 3612 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  if ( N  <  M ,  .0.  ,  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) )  =  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) )
7472, 73eqtrd 2262 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  (  seq M ( ( +g  `  G ) ,  F ) `  N ) )
7574fveq2d 5633 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( K `  ( G  gsumg  F ) )  =  ( K `  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
7626adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( H  gsumg  ( K  o.  F
) )  =  if ( N  <  M ,  ( 0g `  H ) ,  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) ) )
7744iffalsed 3612 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  if ( N  <  M , 
( 0g `  H
) ,  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) )  =  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) )
7876, 77eqtrd 2262 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( H  gsumg  ( K  o.  F
) )  =  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) )
7971, 75, 783eqtr4rd 2273 . 2  |-  ( (
ph  /\  -.  N  <  M )  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) )
80 zdclt 9532 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  -> DECID  N  <  M )
8111, 10, 80syl2anc 411 . . 3  |-  ( ph  -> DECID  N  <  M )
82 exmiddc 841 . . 3  |-  (DECID  N  < 
M  ->  ( N  <  M  \/  -.  N  <  M ) )
8381, 82syl 14 . 2  |-  ( ph  ->  ( N  <  M  \/  -.  N  <  M
) )
8430, 79, 83mpjaodan 803 1  |-  ( ph  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200   _Vcvv 2799   ifcif 3602   class class class wbr 4083    o. ccom 4723   -->wf 5314   ` cfv 5318  (class class class)co 6007   Fincfn 6895    < clt 8189    <_ cle 8190   ZZcz 9454   ZZ>=cuz 9730   ...cfz 10212    seqcseq 10677   Basecbs 13040   +g cplusg 13118   0gc0g 13297    gsumg cgsu 13298   Mndcmnd 13457   MndHom cmhm 13498  CMndccmn 13829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-er 6688  df-map 6805  df-en 6896  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-2 9177  df-n0 9378  df-z 9455  df-uz 9731  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-0g 13299  df-igsum 13300  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-mhm 13500  df-cmn 13831
This theorem is referenced by:  gsumfzmhm2  13889
  Copyright terms: Public domain W3C validator