ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzmhm Unicode version

Theorem gsumfzmhm 13723
Description: Apply a monoid homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 8-Sep-2025.)
Hypotheses
Ref Expression
gsummhm.b  |-  B  =  ( Base `  G
)
gsummhm.z  |-  .0.  =  ( 0g `  G )
gsummhm.g  |-  ( ph  ->  G  e. CMnd )
gsummhm.h  |-  ( ph  ->  H  e.  Mnd )
gsummhm.m  |-  ( ph  ->  M  e.  ZZ )
gsummhm.n  |-  ( ph  ->  N  e.  ZZ )
gsummhm.k  |-  ( ph  ->  K  e.  ( G MndHom  H ) )
gsummhm.f  |-  ( ph  ->  F : ( M ... N ) --> B )
Assertion
Ref Expression
gsumfzmhm  |-  ( ph  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) )

Proof of Theorem gsumfzmhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsummhm.k . . . . 5  |-  ( ph  ->  K  e.  ( G MndHom  H ) )
2 gsummhm.z . . . . . 6  |-  .0.  =  ( 0g `  G )
3 eqid 2206 . . . . . 6  |-  ( 0g
`  H )  =  ( 0g `  H
)
42, 3mhm0 13344 . . . . 5  |-  ( K  e.  ( G MndHom  H
)  ->  ( K `  .0.  )  =  ( 0g `  H ) )
51, 4syl 14 . . . 4  |-  ( ph  ->  ( K `  .0.  )  =  ( 0g `  H ) )
65adantr 276 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( K `  .0.  )  =  ( 0g `  H ) )
7 gsummhm.b . . . . . . 7  |-  B  =  ( Base `  G
)
8 eqid 2206 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
9 gsummhm.g . . . . . . 7  |-  ( ph  ->  G  e. CMnd )
10 gsummhm.m . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
11 gsummhm.n . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
12 gsummhm.f . . . . . . 7  |-  ( ph  ->  F : ( M ... N ) --> B )
137, 2, 8, 9, 10, 11, 12gsumfzval 13267 . . . . . 6  |-  ( ph  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
1413adantr 276 . . . . 5  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) ) )
15 simpr 110 . . . . . 6  |-  ( (
ph  /\  N  <  M )  ->  N  <  M )
1615iftrued 3579 . . . . 5  |-  ( (
ph  /\  N  <  M )  ->  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G
) ,  F ) `
 N ) )  =  .0.  )
1714, 16eqtrd 2239 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  .0.  )
1817fveq2d 5587 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( K `  ( G  gsumg  F ) )  =  ( K `  .0.  ) )
19 eqid 2206 . . . . . 6  |-  ( Base `  H )  =  (
Base `  H )
20 eqid 2206 . . . . . 6  |-  ( +g  `  H )  =  ( +g  `  H )
21 gsummhm.h . . . . . 6  |-  ( ph  ->  H  e.  Mnd )
227, 19mhmf 13341 . . . . . . . 8  |-  ( K  e.  ( G MndHom  H
)  ->  K : B
--> ( Base `  H
) )
231, 22syl 14 . . . . . . 7  |-  ( ph  ->  K : B --> ( Base `  H ) )
24 fco 5447 . . . . . . 7  |-  ( ( K : B --> ( Base `  H )  /\  F : ( M ... N ) --> B )  ->  ( K  o.  F ) : ( M ... N ) --> ( Base `  H
) )
2523, 12, 24syl2anc 411 . . . . . 6  |-  ( ph  ->  ( K  o.  F
) : ( M ... N ) --> (
Base `  H )
)
2619, 3, 20, 21, 10, 11, 25gsumfzval 13267 . . . . 5  |-  ( ph  ->  ( H  gsumg  ( K  o.  F
) )  =  if ( N  <  M ,  ( 0g `  H ) ,  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) ) )
2726adantr 276 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  ( H  gsumg  ( K  o.  F ) )  =  if ( N  <  M , 
( 0g `  H
) ,  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) ) )
2815iftrued 3579 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  if ( N  <  M ,  ( 0g `  H ) ,  (  seq M
( ( +g  `  H
) ,  ( K  o.  F ) ) `
 N ) )  =  ( 0g `  H ) )
2927, 28eqtrd 2239 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( H  gsumg  ( K  o.  F ) )  =  ( 0g
`  H ) )
306, 18, 293eqtr4rd 2250 . 2  |-  ( (
ph  /\  N  <  M )  ->  ( H  gsumg  ( K  o.  F ) )  =  ( K `
 ( G  gsumg  F ) ) )
319cmnmndd 13688 . . . . . . 7  |-  ( ph  ->  G  e.  Mnd )
3231adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  G  e.  Mnd )
33 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  x  e.  B )
34 simprr 531 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
y  e.  B )
357, 8mndcl 13299 . . . . . 6  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
3632, 33, 34, 35syl3anc 1250 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  G ) y )  e.  B )
3736adantlr 477 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) y )  e.  B )
3812ffvelcdmda 5722 . . . . 5  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  B
)
3938adantlr 477 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  -> 
( F `  x
)  e.  B )
4010adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  ZZ )
4111adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ZZ )
4240zred 9502 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  RR )
4341zred 9502 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  RR )
44 simpr 110 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  -.  N  <  M )
4542, 43, 44nltled 8200 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  <_  N )
46 eluz2 9661 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
4740, 41, 45, 46syl3anbrc 1184 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ( ZZ>= `  M )
)
481ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  K  e.  ( G MndHom  H ) )
49 simprl 529 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  x  e.  B )
50 simprr 531 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  y  e.  B )
517, 8, 20mhmlin 13343 . . . . 5  |-  ( ( K  e.  ( G MndHom  H )  /\  x  e.  B  /\  y  e.  B )  ->  ( K `  ( x
( +g  `  G ) y ) )  =  ( ( K `  x ) ( +g  `  H ) ( K `
 y ) ) )
5248, 49, 50, 51syl3anc 1250 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  ( K `  ( x
( +g  `  G ) y ) )  =  ( ( K `  x ) ( +g  `  H ) ( K `
 y ) ) )
5312ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  ->  F : ( M ... N ) --> B )
54 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  ->  x  e.  ( M ... N ) )
55 fvco3 5657 . . . . . 6  |-  ( ( F : ( M ... N ) --> B  /\  x  e.  ( M ... N ) )  ->  ( ( K  o.  F ) `  x )  =  ( K `  ( F `
 x ) ) )
5653, 54, 55syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  -> 
( ( K  o.  F ) `  x
)  =  ( K `
 ( F `  x ) ) )
5756eqcomd 2212 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  -> 
( K `  ( F `  x )
)  =  ( ( K  o.  F ) `
 x ) )
5810, 11fzfigd 10583 . . . . . 6  |-  ( ph  ->  ( M ... N
)  e.  Fin )
5912, 58fexd 5821 . . . . 5  |-  ( ph  ->  F  e.  _V )
6059adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  F  e.  _V )
61 coexg 5232 . . . . . 6  |-  ( ( K  e.  ( G MndHom  H )  /\  F  e.  _V )  ->  ( K  o.  F )  e.  _V )
621, 59, 61syl2anc 411 . . . . 5  |-  ( ph  ->  ( K  o.  F
)  e.  _V )
6362adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( K  o.  F )  e.  _V )
64 plusgslid 12988 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
6564slotex 12903 . . . . . 6  |-  ( G  e. CMnd  ->  ( +g  `  G
)  e.  _V )
669, 65syl 14 . . . . 5  |-  ( ph  ->  ( +g  `  G
)  e.  _V )
6766adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( +g  `  G )  e. 
_V )
6864slotex 12903 . . . . . 6  |-  ( H  e.  Mnd  ->  ( +g  `  H )  e. 
_V )
6921, 68syl 14 . . . . 5  |-  ( ph  ->  ( +g  `  H
)  e.  _V )
7069adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( +g  `  H )  e. 
_V )
7137, 39, 47, 52, 57, 60, 63, 67, 70seqhomog 10682 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( K `  (  seq M ( ( +g  `  G ) ,  F
) `  N )
)  =  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) )
7213adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
7344iffalsed 3582 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  if ( N  <  M ,  .0.  ,  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) )  =  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) )
7472, 73eqtrd 2239 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  (  seq M ( ( +g  `  G ) ,  F ) `  N ) )
7574fveq2d 5587 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( K `  ( G  gsumg  F ) )  =  ( K `  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
7626adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( H  gsumg  ( K  o.  F
) )  =  if ( N  <  M ,  ( 0g `  H ) ,  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) ) )
7744iffalsed 3582 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  if ( N  <  M , 
( 0g `  H
) ,  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) )  =  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) )
7876, 77eqtrd 2239 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( H  gsumg  ( K  o.  F
) )  =  (  seq M ( ( +g  `  H ) ,  ( K  o.  F ) ) `  N ) )
7971, 75, 783eqtr4rd 2250 . 2  |-  ( (
ph  /\  -.  N  <  M )  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) )
80 zdclt 9457 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  -> DECID  N  <  M )
8111, 10, 80syl2anc 411 . . 3  |-  ( ph  -> DECID  N  <  M )
82 exmiddc 838 . . 3  |-  (DECID  N  < 
M  ->  ( N  <  M  \/  -.  N  <  M ) )
8381, 82syl 14 . 2  |-  ( ph  ->  ( N  <  M  \/  -.  N  <  M
) )
8430, 79, 83mpjaodan 800 1  |-  ( ph  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2177   _Vcvv 2773   ifcif 3572   class class class wbr 4047    o. ccom 4683   -->wf 5272   ` cfv 5276  (class class class)co 5951   Fincfn 6834    < clt 8114    <_ cle 8115   ZZcz 9379   ZZ>=cuz 9655   ...cfz 10137    seqcseq 10599   Basecbs 12876   +g cplusg 12953   0gc0g 13132    gsumg cgsu 13133   Mndcmnd 13292   MndHom cmhm 13333  CMndccmn 13664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-1o 6509  df-er 6627  df-map 6744  df-en 6835  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-2 9102  df-n0 9303  df-z 9380  df-uz 9656  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-0g 13134  df-igsum 13135  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-mhm 13335  df-cmn 13666
This theorem is referenced by:  gsumfzmhm2  13724
  Copyright terms: Public domain W3C validator