| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzmhm | Unicode version | ||
| Description: Apply a monoid homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 8-Sep-2025.) |
| Ref | Expression |
|---|---|
| gsummhm.b |
|
| gsummhm.z |
|
| gsummhm.g |
|
| gsummhm.h |
|
| gsummhm.m |
|
| gsummhm.n |
|
| gsummhm.k |
|
| gsummhm.f |
|
| Ref | Expression |
|---|---|
| gsumfzmhm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummhm.k |
. . . . 5
| |
| 2 | gsummhm.z |
. . . . . 6
| |
| 3 | eqid 2209 |
. . . . . 6
| |
| 4 | 2, 3 | mhm0 13467 |
. . . . 5
|
| 5 | 1, 4 | syl 14 |
. . . 4
|
| 6 | 5 | adantr 276 |
. . 3
|
| 7 | gsummhm.b |
. . . . . . 7
| |
| 8 | eqid 2209 |
. . . . . . 7
| |
| 9 | gsummhm.g |
. . . . . . 7
| |
| 10 | gsummhm.m |
. . . . . . 7
| |
| 11 | gsummhm.n |
. . . . . . 7
| |
| 12 | gsummhm.f |
. . . . . . 7
| |
| 13 | 7, 2, 8, 9, 10, 11, 12 | gsumfzval 13390 |
. . . . . 6
|
| 14 | 13 | adantr 276 |
. . . . 5
|
| 15 | simpr 110 |
. . . . . 6
| |
| 16 | 15 | iftrued 3589 |
. . . . 5
|
| 17 | 14, 16 | eqtrd 2242 |
. . . 4
|
| 18 | 17 | fveq2d 5607 |
. . 3
|
| 19 | eqid 2209 |
. . . . . 6
| |
| 20 | eqid 2209 |
. . . . . 6
| |
| 21 | gsummhm.h |
. . . . . 6
| |
| 22 | 7, 19 | mhmf 13464 |
. . . . . . . 8
|
| 23 | 1, 22 | syl 14 |
. . . . . . 7
|
| 24 | fco 5465 |
. . . . . . 7
| |
| 25 | 23, 12, 24 | syl2anc 411 |
. . . . . 6
|
| 26 | 19, 3, 20, 21, 10, 11, 25 | gsumfzval 13390 |
. . . . 5
|
| 27 | 26 | adantr 276 |
. . . 4
|
| 28 | 15 | iftrued 3589 |
. . . 4
|
| 29 | 27, 28 | eqtrd 2242 |
. . 3
|
| 30 | 6, 18, 29 | 3eqtr4rd 2253 |
. 2
|
| 31 | 9 | cmnmndd 13811 |
. . . . . . 7
|
| 32 | 31 | adantr 276 |
. . . . . 6
|
| 33 | simprl 529 |
. . . . . 6
| |
| 34 | simprr 531 |
. . . . . 6
| |
| 35 | 7, 8 | mndcl 13422 |
. . . . . 6
|
| 36 | 32, 33, 34, 35 | syl3anc 1252 |
. . . . 5
|
| 37 | 36 | adantlr 477 |
. . . 4
|
| 38 | 12 | ffvelcdmda 5743 |
. . . . 5
|
| 39 | 38 | adantlr 477 |
. . . 4
|
| 40 | 10 | adantr 276 |
. . . . 5
|
| 41 | 11 | adantr 276 |
. . . . 5
|
| 42 | 40 | zred 9537 |
. . . . . 6
|
| 43 | 41 | zred 9537 |
. . . . . 6
|
| 44 | simpr 110 |
. . . . . 6
| |
| 45 | 42, 43, 44 | nltled 8235 |
. . . . 5
|
| 46 | eluz2 9696 |
. . . . 5
| |
| 47 | 40, 41, 45, 46 | syl3anbrc 1186 |
. . . 4
|
| 48 | 1 | ad2antrr 488 |
. . . . 5
|
| 49 | simprl 529 |
. . . . 5
| |
| 50 | simprr 531 |
. . . . 5
| |
| 51 | 7, 8, 20 | mhmlin 13466 |
. . . . 5
|
| 52 | 48, 49, 50, 51 | syl3anc 1252 |
. . . 4
|
| 53 | 12 | ad2antrr 488 |
. . . . . 6
|
| 54 | simpr 110 |
. . . . . 6
| |
| 55 | fvco3 5678 |
. . . . . 6
| |
| 56 | 53, 54, 55 | syl2anc 411 |
. . . . 5
|
| 57 | 56 | eqcomd 2215 |
. . . 4
|
| 58 | 10, 11 | fzfigd 10620 |
. . . . . 6
|
| 59 | 12, 58 | fexd 5842 |
. . . . 5
|
| 60 | 59 | adantr 276 |
. . . 4
|
| 61 | coexg 5249 |
. . . . . 6
| |
| 62 | 1, 59, 61 | syl2anc 411 |
. . . . 5
|
| 63 | 62 | adantr 276 |
. . . 4
|
| 64 | plusgslid 13111 |
. . . . . . 7
| |
| 65 | 64 | slotex 13025 |
. . . . . 6
|
| 66 | 9, 65 | syl 14 |
. . . . 5
|
| 67 | 66 | adantr 276 |
. . . 4
|
| 68 | 64 | slotex 13025 |
. . . . . 6
|
| 69 | 21, 68 | syl 14 |
. . . . 5
|
| 70 | 69 | adantr 276 |
. . . 4
|
| 71 | 37, 39, 47, 52, 57, 60, 63, 67, 70 | seqhomog 10719 |
. . 3
|
| 72 | 13 | adantr 276 |
. . . . 5
|
| 73 | 44 | iffalsed 3592 |
. . . . 5
|
| 74 | 72, 73 | eqtrd 2242 |
. . . 4
|
| 75 | 74 | fveq2d 5607 |
. . 3
|
| 76 | 26 | adantr 276 |
. . . 4
|
| 77 | 44 | iffalsed 3592 |
. . . 4
|
| 78 | 76, 77 | eqtrd 2242 |
. . 3
|
| 79 | 71, 75, 78 | 3eqtr4rd 2253 |
. 2
|
| 80 | zdclt 9492 |
. . . 4
| |
| 81 | 11, 10, 80 | syl2anc 411 |
. . 3
|
| 82 | exmiddc 840 |
. . 3
| |
| 83 | 81, 82 | syl 14 |
. 2
|
| 84 | 30, 79, 83 | mpjaodan 802 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-1o 6532 df-er 6650 df-map 6767 df-en 6858 df-fin 6860 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-2 9137 df-n0 9338 df-z 9415 df-uz 9691 df-fz 10173 df-fzo 10307 df-seqfrec 10637 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-0g 13257 df-igsum 13258 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-mhm 13458 df-cmn 13789 |
| This theorem is referenced by: gsumfzmhm2 13847 |
| Copyright terms: Public domain | W3C validator |