| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > gsumfzmhm | Unicode version | ||
| Description: Apply a monoid homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 8-Sep-2025.) | 
| Ref | Expression | 
|---|---|
| gsummhm.b | 
 | 
| gsummhm.z | 
 | 
| gsummhm.g | 
 | 
| gsummhm.h | 
 | 
| gsummhm.m | 
 | 
| gsummhm.n | 
 | 
| gsummhm.k | 
 | 
| gsummhm.f | 
 | 
| Ref | Expression | 
|---|---|
| gsumfzmhm | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | gsummhm.k | 
. . . . 5
 | |
| 2 | gsummhm.z | 
. . . . . 6
 | |
| 3 | eqid 2196 | 
. . . . . 6
 | |
| 4 | 2, 3 | mhm0 13100 | 
. . . . 5
 | 
| 5 | 1, 4 | syl 14 | 
. . . 4
 | 
| 6 | 5 | adantr 276 | 
. . 3
 | 
| 7 | gsummhm.b | 
. . . . . . 7
 | |
| 8 | eqid 2196 | 
. . . . . . 7
 | |
| 9 | gsummhm.g | 
. . . . . . 7
 | |
| 10 | gsummhm.m | 
. . . . . . 7
 | |
| 11 | gsummhm.n | 
. . . . . . 7
 | |
| 12 | gsummhm.f | 
. . . . . . 7
 | |
| 13 | 7, 2, 8, 9, 10, 11, 12 | gsumfzval 13034 | 
. . . . . 6
 | 
| 14 | 13 | adantr 276 | 
. . . . 5
 | 
| 15 | simpr 110 | 
. . . . . 6
 | |
| 16 | 15 | iftrued 3568 | 
. . . . 5
 | 
| 17 | 14, 16 | eqtrd 2229 | 
. . . 4
 | 
| 18 | 17 | fveq2d 5562 | 
. . 3
 | 
| 19 | eqid 2196 | 
. . . . . 6
 | |
| 20 | eqid 2196 | 
. . . . . 6
 | |
| 21 | gsummhm.h | 
. . . . . 6
 | |
| 22 | 7, 19 | mhmf 13097 | 
. . . . . . . 8
 | 
| 23 | 1, 22 | syl 14 | 
. . . . . . 7
 | 
| 24 | fco 5423 | 
. . . . . . 7
 | |
| 25 | 23, 12, 24 | syl2anc 411 | 
. . . . . 6
 | 
| 26 | 19, 3, 20, 21, 10, 11, 25 | gsumfzval 13034 | 
. . . . 5
 | 
| 27 | 26 | adantr 276 | 
. . . 4
 | 
| 28 | 15 | iftrued 3568 | 
. . . 4
 | 
| 29 | 27, 28 | eqtrd 2229 | 
. . 3
 | 
| 30 | 6, 18, 29 | 3eqtr4rd 2240 | 
. 2
 | 
| 31 | 9 | cmnmndd 13438 | 
. . . . . . 7
 | 
| 32 | 31 | adantr 276 | 
. . . . . 6
 | 
| 33 | simprl 529 | 
. . . . . 6
 | |
| 34 | simprr 531 | 
. . . . . 6
 | |
| 35 | 7, 8 | mndcl 13064 | 
. . . . . 6
 | 
| 36 | 32, 33, 34, 35 | syl3anc 1249 | 
. . . . 5
 | 
| 37 | 36 | adantlr 477 | 
. . . 4
 | 
| 38 | 12 | ffvelcdmda 5697 | 
. . . . 5
 | 
| 39 | 38 | adantlr 477 | 
. . . 4
 | 
| 40 | 10 | adantr 276 | 
. . . . 5
 | 
| 41 | 11 | adantr 276 | 
. . . . 5
 | 
| 42 | 40 | zred 9448 | 
. . . . . 6
 | 
| 43 | 41 | zred 9448 | 
. . . . . 6
 | 
| 44 | simpr 110 | 
. . . . . 6
 | |
| 45 | 42, 43, 44 | nltled 8147 | 
. . . . 5
 | 
| 46 | eluz2 9607 | 
. . . . 5
 | |
| 47 | 40, 41, 45, 46 | syl3anbrc 1183 | 
. . . 4
 | 
| 48 | 1 | ad2antrr 488 | 
. . . . 5
 | 
| 49 | simprl 529 | 
. . . . 5
 | |
| 50 | simprr 531 | 
. . . . 5
 | |
| 51 | 7, 8, 20 | mhmlin 13099 | 
. . . . 5
 | 
| 52 | 48, 49, 50, 51 | syl3anc 1249 | 
. . . 4
 | 
| 53 | 12 | ad2antrr 488 | 
. . . . . 6
 | 
| 54 | simpr 110 | 
. . . . . 6
 | |
| 55 | fvco3 5632 | 
. . . . . 6
 | |
| 56 | 53, 54, 55 | syl2anc 411 | 
. . . . 5
 | 
| 57 | 56 | eqcomd 2202 | 
. . . 4
 | 
| 58 | 10, 11 | fzfigd 10523 | 
. . . . . 6
 | 
| 59 | 12, 58 | fexd 5792 | 
. . . . 5
 | 
| 60 | 59 | adantr 276 | 
. . . 4
 | 
| 61 | coexg 5214 | 
. . . . . 6
 | |
| 62 | 1, 59, 61 | syl2anc 411 | 
. . . . 5
 | 
| 63 | 62 | adantr 276 | 
. . . 4
 | 
| 64 | plusgslid 12790 | 
. . . . . . 7
 | |
| 65 | 64 | slotex 12705 | 
. . . . . 6
 | 
| 66 | 9, 65 | syl 14 | 
. . . . 5
 | 
| 67 | 66 | adantr 276 | 
. . . 4
 | 
| 68 | 64 | slotex 12705 | 
. . . . . 6
 | 
| 69 | 21, 68 | syl 14 | 
. . . . 5
 | 
| 70 | 69 | adantr 276 | 
. . . 4
 | 
| 71 | 37, 39, 47, 52, 57, 60, 63, 67, 70 | seqhomog 10622 | 
. . 3
 | 
| 72 | 13 | adantr 276 | 
. . . . 5
 | 
| 73 | 44 | iffalsed 3571 | 
. . . . 5
 | 
| 74 | 72, 73 | eqtrd 2229 | 
. . . 4
 | 
| 75 | 74 | fveq2d 5562 | 
. . 3
 | 
| 76 | 26 | adantr 276 | 
. . . 4
 | 
| 77 | 44 | iffalsed 3571 | 
. . . 4
 | 
| 78 | 76, 77 | eqtrd 2229 | 
. . 3
 | 
| 79 | 71, 75, 78 | 3eqtr4rd 2240 | 
. 2
 | 
| 80 | zdclt 9403 | 
. . . 4
 | |
| 81 | 11, 10, 80 | syl2anc 411 | 
. . 3
 | 
| 82 | exmiddc 837 | 
. . 3
 | |
| 83 | 81, 82 | syl 14 | 
. 2
 | 
| 84 | 30, 79, 83 | mpjaodan 799 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-1o 6474 df-er 6592 df-map 6709 df-en 6800 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-igsum 12930 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-mhm 13091 df-cmn 13416 | 
| This theorem is referenced by: gsumfzmhm2 13474 | 
| Copyright terms: Public domain | W3C validator |