ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fexd GIF version

Theorem fexd 5788
Description: If the domain of a mapping is a set, the function is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fexd.1 (𝜑𝐹:𝐴𝐵)
fexd.2 (𝜑𝐴𝐶)
Assertion
Ref Expression
fexd (𝜑𝐹 ∈ V)

Proof of Theorem fexd
StepHypRef Expression
1 fexd.1 . 2 (𝜑𝐹:𝐴𝐵)
2 fexd.2 . 2 (𝜑𝐴𝐶)
3 fex 5787 . 2 ((𝐹:𝐴𝐵𝐴𝐶) → 𝐹 ∈ V)
41, 2, 3syl2anc 411 1 (𝜑𝐹 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  Vcvv 2760  wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262
This theorem is referenced by:  seqf1oglem2a  10589  seqf1oglem2  10591  seqf1og  10592  iswrd  10916  imasival  12889  imasbas  12890  imasplusg  12891  imasmulr  12892  imasaddfnlemg  12897  imasaddvallemg  12898  igsumval  12973  gsumsplit1r  12981  gsumprval  12982  gsumfzcl  13071  isghm  13313  gsumfzreidx  13407  gsumfzsubmcl  13408  gsumfzmptfidmadd  13409  gsumfzmhm  13413
  Copyright terms: Public domain W3C validator