| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fexd | GIF version | ||
| Description: If the domain of a mapping is a set, the function is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fexd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fexd | ⊢ (𝜑 → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fexd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | fexd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 3 | fex 5812 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐹 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 Vcvv 2771 ⟶wf 5266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 |
| This theorem is referenced by: seqf1oglem2a 10661 seqf1oglem2 10663 seqf1og 10664 iswrd 10994 imasival 13080 imasbas 13081 imasplusg 13082 imasmulr 13083 imasaddfnlemg 13088 imasaddvallemg 13089 igsumval 13164 gsumsplit1r 13172 gsumprval 13173 prdssgrpd 13189 gsumfzcl 13273 isghm 13521 gsumfzreidx 13615 gsumfzsubmcl 13616 gsumfzmptfidmadd 13617 gsumfzmhm 13621 |
| Copyright terms: Public domain | W3C validator |