| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fexd | GIF version | ||
| Description: If the domain of a mapping is a set, the function is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fexd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fexd | ⊢ (𝜑 → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fexd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | fexd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 3 | fex 5831 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐹 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 Vcvv 2773 ⟶wf 5281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 |
| This theorem is referenced by: seqf1oglem2a 10695 seqf1oglem2 10697 seqf1og 10698 iswrd 11028 imasival 13223 imasbas 13224 imasplusg 13225 imasmulr 13226 imasaddfnlemg 13231 imasaddvallemg 13232 igsumval 13307 gsumsplit1r 13315 gsumprval 13316 prdssgrpd 13332 gsumfzcl 13416 isghm 13664 gsumfzreidx 13758 gsumfzsubmcl 13759 gsumfzmptfidmadd 13760 gsumfzmhm 13764 |
| Copyright terms: Public domain | W3C validator |