| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumsplit1r | Unicode version | ||
| Description: Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in [Lang] p. 4, first formula. (Contributed by AV, 26-Dec-2023.) |
| Ref | Expression |
|---|---|
| gsumsplit1r.b |
|
| gsumsplit1r.p |
|
| gsumsplit1r.g |
|
| gsumsplit1r.m |
|
| gsumsplit1r.n |
|
| gsumsplit1r.f |
|
| Ref | Expression |
|---|---|
| gsumsplit1r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsplit1r.b |
. . 3
| |
| 2 | gsumsplit1r.p |
. . 3
| |
| 3 | gsumsplit1r.g |
. . 3
| |
| 4 | gsumsplit1r.n |
. . . 4
| |
| 5 | peano2uz 9739 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | gsumsplit1r.f |
. . 3
| |
| 8 | 1, 2, 3, 6, 7 | gsumval2 13344 |
. 2
|
| 9 | gsumsplit1r.m |
. . . . . . 7
| |
| 10 | eluzelz 9692 |
. . . . . . . . 9
| |
| 11 | 4, 10 | syl 14 |
. . . . . . . 8
|
| 12 | 11 | peano2zd 9533 |
. . . . . . 7
|
| 13 | 9, 12 | fzfigd 10613 |
. . . . . 6
|
| 14 | 7, 13 | fexd 5837 |
. . . . 5
|
| 15 | vex 2779 |
. . . . 5
| |
| 16 | fvexg 5618 |
. . . . 5
| |
| 17 | 14, 15, 16 | sylancl 413 |
. . . 4
|
| 18 | 17 | adantr 276 |
. . 3
|
| 19 | plusgslid 13059 |
. . . . . . . 8
| |
| 20 | 19 | slotex 12974 |
. . . . . . 7
|
| 21 | 3, 20 | syl 14 |
. . . . . 6
|
| 22 | 2, 21 | eqeltrid 2294 |
. . . . 5
|
| 23 | vex 2779 |
. . . . . 6
| |
| 24 | 23 | a1i 9 |
. . . . 5
|
| 25 | ovexg 6001 |
. . . . 5
| |
| 26 | 15, 22, 24, 25 | mp3an2i 1355 |
. . . 4
|
| 27 | 26 | adantr 276 |
. . 3
|
| 28 | 4, 18, 27 | seq3p1 10647 |
. 2
|
| 29 | fzssp1 10224 |
. . . . . . 7
| |
| 30 | 29 | a1i 9 |
. . . . . 6
|
| 31 | 7, 30 | fssresd 5474 |
. . . . 5
|
| 32 | 1, 2, 3, 4, 31 | gsumval2 13344 |
. . . 4
|
| 33 | 9 | uzidd 9698 |
. . . . 5
|
| 34 | resexg 5018 |
. . . . . . . . . 10
| |
| 35 | 14, 34 | syl 14 |
. . . . . . . . 9
|
| 36 | fvexg 5618 |
. . . . . . . . 9
| |
| 37 | 35, 15, 36 | sylancl 413 |
. . . . . . . 8
|
| 38 | 37 | adantr 276 |
. . . . . . 7
|
| 39 | 9, 38, 27 | seq3-1 10644 |
. . . . . 6
|
| 40 | eluzfz1 10188 |
. . . . . . . 8
| |
| 41 | 4, 40 | syl 14 |
. . . . . . 7
|
| 42 | 41 | fvresd 5624 |
. . . . . 6
|
| 43 | 39, 42 | eqtrd 2240 |
. . . . 5
|
| 44 | fzp1ss 10230 |
. . . . . . . 8
| |
| 45 | 9, 44 | syl 14 |
. . . . . . 7
|
| 46 | 45 | sselda 3201 |
. . . . . 6
|
| 47 | 46 | fvresd 5624 |
. . . . 5
|
| 48 | 33, 43, 38, 18, 27, 4, 47 | seq3fveq2 10657 |
. . . 4
|
| 49 | 32, 48 | eqtr2d 2241 |
. . 3
|
| 50 | 49 | oveq1d 5982 |
. 2
|
| 51 | 8, 28, 50 | 3eqtrd 2244 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-1o 6525 df-er 6643 df-en 6851 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-2 9130 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-seqfrec 10630 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-0g 13205 df-igsum 13206 |
| This theorem is referenced by: gsumfzconst 13792 gsumfzfsumlemm 14464 |
| Copyright terms: Public domain | W3C validator |