ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumsplit1r Unicode version

Theorem gsumsplit1r 12981
Description: Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in [Lang] p. 4, first formula. (Contributed by AV, 26-Dec-2023.)
Hypotheses
Ref Expression
gsumsplit1r.b  |-  B  =  ( Base `  G
)
gsumsplit1r.p  |-  .+  =  ( +g  `  G )
gsumsplit1r.g  |-  ( ph  ->  G  e.  V )
gsumsplit1r.m  |-  ( ph  ->  M  e.  ZZ )
gsumsplit1r.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
gsumsplit1r.f  |-  ( ph  ->  F : ( M ... ( N  + 
1 ) ) --> B )
Assertion
Ref Expression
gsumsplit1r  |-  ( ph  ->  ( G  gsumg  F )  =  ( ( G  gsumg  ( F  |`  ( M ... N ) ) )  .+  ( F `
 ( N  + 
1 ) ) ) )

Proof of Theorem gsumsplit1r
Dummy variables  k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumsplit1r.b . . 3  |-  B  =  ( Base `  G
)
2 gsumsplit1r.p . . 3  |-  .+  =  ( +g  `  G )
3 gsumsplit1r.g . . 3  |-  ( ph  ->  G  e.  V )
4 gsumsplit1r.n . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 peano2uz 9648 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
64, 5syl 14 . . 3  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )
7 gsumsplit1r.f . . 3  |-  ( ph  ->  F : ( M ... ( N  + 
1 ) ) --> B )
81, 2, 3, 6, 7gsumval2 12980 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  ( N  +  1 ) ) )
9 gsumsplit1r.m . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
10 eluzelz 9601 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
114, 10syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
1211peano2zd 9442 . . . . . . 7  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
139, 12fzfigd 10502 . . . . . 6  |-  ( ph  ->  ( M ... ( N  +  1 ) )  e.  Fin )
147, 13fexd 5788 . . . . 5  |-  ( ph  ->  F  e.  _V )
15 vex 2763 . . . . 5  |-  x  e. 
_V
16 fvexg 5573 . . . . 5  |-  ( ( F  e.  _V  /\  x  e.  _V )  ->  ( F `  x
)  e.  _V )
1714, 15, 16sylancl 413 . . . 4  |-  ( ph  ->  ( F `  x
)  e.  _V )
1817adantr 276 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  _V )
19 plusgslid 12730 . . . . . . . 8  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
2019slotex 12645 . . . . . . 7  |-  ( G  e.  V  ->  ( +g  `  G )  e. 
_V )
213, 20syl 14 . . . . . 6  |-  ( ph  ->  ( +g  `  G
)  e.  _V )
222, 21eqeltrid 2280 . . . . 5  |-  ( ph  ->  .+  e.  _V )
23 vex 2763 . . . . . 6  |-  y  e. 
_V
2423a1i 9 . . . . 5  |-  ( ph  ->  y  e.  _V )
25 ovexg 5952 . . . . 5  |-  ( ( x  e.  _V  /\  .+  e.  _V  /\  y  e.  _V )  ->  (
x  .+  y )  e.  _V )
2615, 22, 24, 25mp3an2i 1353 . . . 4  |-  ( ph  ->  ( x  .+  y
)  e.  _V )
2726adantr 276 . . 3  |-  ( (
ph  /\  ( x  e.  _V  /\  y  e. 
_V ) )  -> 
( x  .+  y
)  e.  _V )
284, 18, 27seq3p1 10536 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) ) )
29 fzssp1 10133 . . . . . . 7  |-  ( M ... N )  C_  ( M ... ( N  +  1 ) )
3029a1i 9 . . . . . 6  |-  ( ph  ->  ( M ... N
)  C_  ( M ... ( N  +  1 ) ) )
317, 30fssresd 5430 . . . . 5  |-  ( ph  ->  ( F  |`  ( M ... N ) ) : ( M ... N ) --> B )
321, 2, 3, 4, 31gsumval2 12980 . . . 4  |-  ( ph  ->  ( G  gsumg  ( F  |`  ( M ... N ) ) )  =  (  seq M (  .+  , 
( F  |`  ( M ... N ) ) ) `  N ) )
339uzidd 9607 . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
34 resexg 4982 . . . . . . . . . 10  |-  ( F  e.  _V  ->  ( F  |`  ( M ... N ) )  e. 
_V )
3514, 34syl 14 . . . . . . . . 9  |-  ( ph  ->  ( F  |`  ( M ... N ) )  e.  _V )
36 fvexg 5573 . . . . . . . . 9  |-  ( ( ( F  |`  ( M ... N ) )  e.  _V  /\  x  e.  _V )  ->  (
( F  |`  ( M ... N ) ) `
 x )  e. 
_V )
3735, 15, 36sylancl 413 . . . . . . . 8  |-  ( ph  ->  ( ( F  |`  ( M ... N ) ) `  x )  e.  _V )
3837adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( F  |`  ( M ... N ) ) `  x )  e.  _V )
399, 38, 27seq3-1 10533 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  ( F  |`  ( M ... N
) ) ) `  M )  =  ( ( F  |`  ( M ... N ) ) `
 M ) )
40 eluzfz1 10097 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
414, 40syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ( M ... N ) )
4241fvresd 5579 . . . . . 6  |-  ( ph  ->  ( ( F  |`  ( M ... N ) ) `  M )  =  ( F `  M ) )
4339, 42eqtrd 2226 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  ( F  |`  ( M ... N
) ) ) `  M )  =  ( F `  M ) )
44 fzp1ss 10139 . . . . . . . 8  |-  ( M  e.  ZZ  ->  (
( M  +  1 ) ... N ) 
C_  ( M ... N ) )
459, 44syl 14 . . . . . . 7  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  C_  ( M ... N ) )
4645sselda 3179 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  k  e.  ( M ... N
) )
4746fvresd 5579 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( F  |`  ( M ... N ) ) `
 k )  =  ( F `  k
) )
4833, 43, 38, 18, 27, 4, 47seq3fveq2 10546 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  ( F  |`  ( M ... N
) ) ) `  N )  =  (  seq M (  .+  ,  F ) `  N
) )
4932, 48eqtr2d 2227 . . 3  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  ( G  gsumg  ( F  |`  ( M ... N ) ) ) )
5049oveq1d 5933 . 2  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) )  =  ( ( G  gsumg  ( F  |`  ( M ... N ) ) )  .+  ( F `
 ( N  + 
1 ) ) ) )
518, 28, 503eqtrd 2230 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( ( G  gsumg  ( F  |`  ( M ... N ) ) )  .+  ( F `
 ( N  + 
1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    C_ wss 3153    |` cres 4661   -->wf 5250   ` cfv 5254  (class class class)co 5918   Fincfn 6794   1c1 7873    + caddc 7875   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074    seqcseq 10518   Basecbs 12618   +g cplusg 12695    gsumg cgsu 12868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-er 6587  df-en 6795  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-igsum 12870
This theorem is referenced by:  gsumfzconst  13411  gsumfzfsumlemm  14075
  Copyright terms: Public domain W3C validator