ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumsplit1r Unicode version

Theorem gsumsplit1r 13100
Description: Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in [Lang] p. 4, first formula. (Contributed by AV, 26-Dec-2023.)
Hypotheses
Ref Expression
gsumsplit1r.b  |-  B  =  ( Base `  G
)
gsumsplit1r.p  |-  .+  =  ( +g  `  G )
gsumsplit1r.g  |-  ( ph  ->  G  e.  V )
gsumsplit1r.m  |-  ( ph  ->  M  e.  ZZ )
gsumsplit1r.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
gsumsplit1r.f  |-  ( ph  ->  F : ( M ... ( N  + 
1 ) ) --> B )
Assertion
Ref Expression
gsumsplit1r  |-  ( ph  ->  ( G  gsumg  F )  =  ( ( G  gsumg  ( F  |`  ( M ... N ) ) )  .+  ( F `
 ( N  + 
1 ) ) ) )

Proof of Theorem gsumsplit1r
Dummy variables  k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumsplit1r.b . . 3  |-  B  =  ( Base `  G
)
2 gsumsplit1r.p . . 3  |-  .+  =  ( +g  `  G )
3 gsumsplit1r.g . . 3  |-  ( ph  ->  G  e.  V )
4 gsumsplit1r.n . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 peano2uz 9674 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
64, 5syl 14 . . 3  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )
7 gsumsplit1r.f . . 3  |-  ( ph  ->  F : ( M ... ( N  + 
1 ) ) --> B )
81, 2, 3, 6, 7gsumval2 13099 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  ( N  +  1 ) ) )
9 gsumsplit1r.m . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
10 eluzelz 9627 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
114, 10syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
1211peano2zd 9468 . . . . . . 7  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
139, 12fzfigd 10540 . . . . . 6  |-  ( ph  ->  ( M ... ( N  +  1 ) )  e.  Fin )
147, 13fexd 5795 . . . . 5  |-  ( ph  ->  F  e.  _V )
15 vex 2766 . . . . 5  |-  x  e. 
_V
16 fvexg 5580 . . . . 5  |-  ( ( F  e.  _V  /\  x  e.  _V )  ->  ( F `  x
)  e.  _V )
1714, 15, 16sylancl 413 . . . 4  |-  ( ph  ->  ( F `  x
)  e.  _V )
1817adantr 276 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  _V )
19 plusgslid 12815 . . . . . . . 8  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
2019slotex 12730 . . . . . . 7  |-  ( G  e.  V  ->  ( +g  `  G )  e. 
_V )
213, 20syl 14 . . . . . 6  |-  ( ph  ->  ( +g  `  G
)  e.  _V )
222, 21eqeltrid 2283 . . . . 5  |-  ( ph  ->  .+  e.  _V )
23 vex 2766 . . . . . 6  |-  y  e. 
_V
2423a1i 9 . . . . 5  |-  ( ph  ->  y  e.  _V )
25 ovexg 5959 . . . . 5  |-  ( ( x  e.  _V  /\  .+  e.  _V  /\  y  e.  _V )  ->  (
x  .+  y )  e.  _V )
2615, 22, 24, 25mp3an2i 1353 . . . 4  |-  ( ph  ->  ( x  .+  y
)  e.  _V )
2726adantr 276 . . 3  |-  ( (
ph  /\  ( x  e.  _V  /\  y  e. 
_V ) )  -> 
( x  .+  y
)  e.  _V )
284, 18, 27seq3p1 10574 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) ) )
29 fzssp1 10159 . . . . . . 7  |-  ( M ... N )  C_  ( M ... ( N  +  1 ) )
3029a1i 9 . . . . . 6  |-  ( ph  ->  ( M ... N
)  C_  ( M ... ( N  +  1 ) ) )
317, 30fssresd 5437 . . . . 5  |-  ( ph  ->  ( F  |`  ( M ... N ) ) : ( M ... N ) --> B )
321, 2, 3, 4, 31gsumval2 13099 . . . 4  |-  ( ph  ->  ( G  gsumg  ( F  |`  ( M ... N ) ) )  =  (  seq M (  .+  , 
( F  |`  ( M ... N ) ) ) `  N ) )
339uzidd 9633 . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
34 resexg 4987 . . . . . . . . . 10  |-  ( F  e.  _V  ->  ( F  |`  ( M ... N ) )  e. 
_V )
3514, 34syl 14 . . . . . . . . 9  |-  ( ph  ->  ( F  |`  ( M ... N ) )  e.  _V )
36 fvexg 5580 . . . . . . . . 9  |-  ( ( ( F  |`  ( M ... N ) )  e.  _V  /\  x  e.  _V )  ->  (
( F  |`  ( M ... N ) ) `
 x )  e. 
_V )
3735, 15, 36sylancl 413 . . . . . . . 8  |-  ( ph  ->  ( ( F  |`  ( M ... N ) ) `  x )  e.  _V )
3837adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( F  |`  ( M ... N ) ) `  x )  e.  _V )
399, 38, 27seq3-1 10571 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  ( F  |`  ( M ... N
) ) ) `  M )  =  ( ( F  |`  ( M ... N ) ) `
 M ) )
40 eluzfz1 10123 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
414, 40syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ( M ... N ) )
4241fvresd 5586 . . . . . 6  |-  ( ph  ->  ( ( F  |`  ( M ... N ) ) `  M )  =  ( F `  M ) )
4339, 42eqtrd 2229 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  ( F  |`  ( M ... N
) ) ) `  M )  =  ( F `  M ) )
44 fzp1ss 10165 . . . . . . . 8  |-  ( M  e.  ZZ  ->  (
( M  +  1 ) ... N ) 
C_  ( M ... N ) )
459, 44syl 14 . . . . . . 7  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  C_  ( M ... N ) )
4645sselda 3184 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  k  e.  ( M ... N
) )
4746fvresd 5586 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( F  |`  ( M ... N ) ) `
 k )  =  ( F `  k
) )
4833, 43, 38, 18, 27, 4, 47seq3fveq2 10584 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  ( F  |`  ( M ... N
) ) ) `  N )  =  (  seq M (  .+  ,  F ) `  N
) )
4932, 48eqtr2d 2230 . . 3  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  ( G  gsumg  ( F  |`  ( M ... N ) ) ) )
5049oveq1d 5940 . 2  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) )  =  ( ( G  gsumg  ( F  |`  ( M ... N ) ) )  .+  ( F `
 ( N  + 
1 ) ) ) )
518, 28, 503eqtrd 2233 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( ( G  gsumg  ( F  |`  ( M ... N ) ) )  .+  ( F `
 ( N  + 
1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157    |` cres 4666   -->wf 5255   ` cfv 5259  (class class class)co 5925   Fincfn 6808   1c1 7897    + caddc 7899   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100    seqcseq 10556   Basecbs 12703   +g cplusg 12780    gsumg cgsu 12959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-en 6809  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-seqfrec 10557  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-igsum 12961
This theorem is referenced by:  gsumfzconst  13547  gsumfzfsumlemm  14219
  Copyright terms: Public domain W3C validator