ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumsplit1r Unicode version

Theorem gsumsplit1r 13345
Description: Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in [Lang] p. 4, first formula. (Contributed by AV, 26-Dec-2023.)
Hypotheses
Ref Expression
gsumsplit1r.b  |-  B  =  ( Base `  G
)
gsumsplit1r.p  |-  .+  =  ( +g  `  G )
gsumsplit1r.g  |-  ( ph  ->  G  e.  V )
gsumsplit1r.m  |-  ( ph  ->  M  e.  ZZ )
gsumsplit1r.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
gsumsplit1r.f  |-  ( ph  ->  F : ( M ... ( N  + 
1 ) ) --> B )
Assertion
Ref Expression
gsumsplit1r  |-  ( ph  ->  ( G  gsumg  F )  =  ( ( G  gsumg  ( F  |`  ( M ... N ) ) )  .+  ( F `
 ( N  + 
1 ) ) ) )

Proof of Theorem gsumsplit1r
Dummy variables  k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumsplit1r.b . . 3  |-  B  =  ( Base `  G
)
2 gsumsplit1r.p . . 3  |-  .+  =  ( +g  `  G )
3 gsumsplit1r.g . . 3  |-  ( ph  ->  G  e.  V )
4 gsumsplit1r.n . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 peano2uz 9739 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
64, 5syl 14 . . 3  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )
7 gsumsplit1r.f . . 3  |-  ( ph  ->  F : ( M ... ( N  + 
1 ) ) --> B )
81, 2, 3, 6, 7gsumval2 13344 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  ( N  +  1 ) ) )
9 gsumsplit1r.m . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
10 eluzelz 9692 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
114, 10syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
1211peano2zd 9533 . . . . . . 7  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
139, 12fzfigd 10613 . . . . . 6  |-  ( ph  ->  ( M ... ( N  +  1 ) )  e.  Fin )
147, 13fexd 5837 . . . . 5  |-  ( ph  ->  F  e.  _V )
15 vex 2779 . . . . 5  |-  x  e. 
_V
16 fvexg 5618 . . . . 5  |-  ( ( F  e.  _V  /\  x  e.  _V )  ->  ( F `  x
)  e.  _V )
1714, 15, 16sylancl 413 . . . 4  |-  ( ph  ->  ( F `  x
)  e.  _V )
1817adantr 276 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  _V )
19 plusgslid 13059 . . . . . . . 8  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
2019slotex 12974 . . . . . . 7  |-  ( G  e.  V  ->  ( +g  `  G )  e. 
_V )
213, 20syl 14 . . . . . 6  |-  ( ph  ->  ( +g  `  G
)  e.  _V )
222, 21eqeltrid 2294 . . . . 5  |-  ( ph  ->  .+  e.  _V )
23 vex 2779 . . . . . 6  |-  y  e. 
_V
2423a1i 9 . . . . 5  |-  ( ph  ->  y  e.  _V )
25 ovexg 6001 . . . . 5  |-  ( ( x  e.  _V  /\  .+  e.  _V  /\  y  e.  _V )  ->  (
x  .+  y )  e.  _V )
2615, 22, 24, 25mp3an2i 1355 . . . 4  |-  ( ph  ->  ( x  .+  y
)  e.  _V )
2726adantr 276 . . 3  |-  ( (
ph  /\  ( x  e.  _V  /\  y  e. 
_V ) )  -> 
( x  .+  y
)  e.  _V )
284, 18, 27seq3p1 10647 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( N  + 
1 ) )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) ) )
29 fzssp1 10224 . . . . . . 7  |-  ( M ... N )  C_  ( M ... ( N  +  1 ) )
3029a1i 9 . . . . . 6  |-  ( ph  ->  ( M ... N
)  C_  ( M ... ( N  +  1 ) ) )
317, 30fssresd 5474 . . . . 5  |-  ( ph  ->  ( F  |`  ( M ... N ) ) : ( M ... N ) --> B )
321, 2, 3, 4, 31gsumval2 13344 . . . 4  |-  ( ph  ->  ( G  gsumg  ( F  |`  ( M ... N ) ) )  =  (  seq M (  .+  , 
( F  |`  ( M ... N ) ) ) `  N ) )
339uzidd 9698 . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
34 resexg 5018 . . . . . . . . . 10  |-  ( F  e.  _V  ->  ( F  |`  ( M ... N ) )  e. 
_V )
3514, 34syl 14 . . . . . . . . 9  |-  ( ph  ->  ( F  |`  ( M ... N ) )  e.  _V )
36 fvexg 5618 . . . . . . . . 9  |-  ( ( ( F  |`  ( M ... N ) )  e.  _V  /\  x  e.  _V )  ->  (
( F  |`  ( M ... N ) ) `
 x )  e. 
_V )
3735, 15, 36sylancl 413 . . . . . . . 8  |-  ( ph  ->  ( ( F  |`  ( M ... N ) ) `  x )  e.  _V )
3837adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( F  |`  ( M ... N ) ) `  x )  e.  _V )
399, 38, 27seq3-1 10644 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  ( F  |`  ( M ... N
) ) ) `  M )  =  ( ( F  |`  ( M ... N ) ) `
 M ) )
40 eluzfz1 10188 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
414, 40syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ( M ... N ) )
4241fvresd 5624 . . . . . 6  |-  ( ph  ->  ( ( F  |`  ( M ... N ) ) `  M )  =  ( F `  M ) )
4339, 42eqtrd 2240 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  ( F  |`  ( M ... N
) ) ) `  M )  =  ( F `  M ) )
44 fzp1ss 10230 . . . . . . . 8  |-  ( M  e.  ZZ  ->  (
( M  +  1 ) ... N ) 
C_  ( M ... N ) )
459, 44syl 14 . . . . . . 7  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  C_  ( M ... N ) )
4645sselda 3201 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  k  e.  ( M ... N
) )
4746fvresd 5624 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( F  |`  ( M ... N ) ) `
 k )  =  ( F `  k
) )
4833, 43, 38, 18, 27, 4, 47seq3fveq2 10657 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  ( F  |`  ( M ... N
) ) ) `  N )  =  (  seq M (  .+  ,  F ) `  N
) )
4932, 48eqtr2d 2241 . . 3  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  ( G  gsumg  ( F  |`  ( M ... N ) ) ) )
5049oveq1d 5982 . 2  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  N )  .+  ( F `  ( N  +  1 ) ) )  =  ( ( G  gsumg  ( F  |`  ( M ... N ) ) )  .+  ( F `
 ( N  + 
1 ) ) ) )
518, 28, 503eqtrd 2244 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( ( G  gsumg  ( F  |`  ( M ... N ) ) )  .+  ( F `
 ( N  + 
1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776    C_ wss 3174    |` cres 4695   -->wf 5286   ` cfv 5290  (class class class)co 5967   Fincfn 6850   1c1 7961    + caddc 7963   ZZcz 9407   ZZ>=cuz 9683   ...cfz 10165    seqcseq 10629   Basecbs 12947   +g cplusg 13024    gsumg cgsu 13204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-er 6643  df-en 6851  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-seqfrec 10630  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-igsum 13206
This theorem is referenced by:  gsumfzconst  13792  gsumfzfsumlemm  14464
  Copyright terms: Public domain W3C validator