| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumsplit1r | Unicode version | ||
| Description: Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in [Lang] p. 4, first formula. (Contributed by AV, 26-Dec-2023.) |
| Ref | Expression |
|---|---|
| gsumsplit1r.b |
|
| gsumsplit1r.p |
|
| gsumsplit1r.g |
|
| gsumsplit1r.m |
|
| gsumsplit1r.n |
|
| gsumsplit1r.f |
|
| Ref | Expression |
|---|---|
| gsumsplit1r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsplit1r.b |
. . 3
| |
| 2 | gsumsplit1r.p |
. . 3
| |
| 3 | gsumsplit1r.g |
. . 3
| |
| 4 | gsumsplit1r.n |
. . . 4
| |
| 5 | peano2uz 9774 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | gsumsplit1r.f |
. . 3
| |
| 8 | 1, 2, 3, 6, 7 | gsumval2 13425 |
. 2
|
| 9 | gsumsplit1r.m |
. . . . . . 7
| |
| 10 | eluzelz 9727 |
. . . . . . . . 9
| |
| 11 | 4, 10 | syl 14 |
. . . . . . . 8
|
| 12 | 11 | peano2zd 9568 |
. . . . . . 7
|
| 13 | 9, 12 | fzfigd 10648 |
. . . . . 6
|
| 14 | 7, 13 | fexd 5868 |
. . . . 5
|
| 15 | vex 2802 |
. . . . 5
| |
| 16 | fvexg 5645 |
. . . . 5
| |
| 17 | 14, 15, 16 | sylancl 413 |
. . . 4
|
| 18 | 17 | adantr 276 |
. . 3
|
| 19 | plusgslid 13140 |
. . . . . . . 8
| |
| 20 | 19 | slotex 13054 |
. . . . . . 7
|
| 21 | 3, 20 | syl 14 |
. . . . . 6
|
| 22 | 2, 21 | eqeltrid 2316 |
. . . . 5
|
| 23 | vex 2802 |
. . . . . 6
| |
| 24 | 23 | a1i 9 |
. . . . 5
|
| 25 | ovexg 6034 |
. . . . 5
| |
| 26 | 15, 22, 24, 25 | mp3an2i 1376 |
. . . 4
|
| 27 | 26 | adantr 276 |
. . 3
|
| 28 | 4, 18, 27 | seq3p1 10682 |
. 2
|
| 29 | fzssp1 10259 |
. . . . . . 7
| |
| 30 | 29 | a1i 9 |
. . . . . 6
|
| 31 | 7, 30 | fssresd 5501 |
. . . . 5
|
| 32 | 1, 2, 3, 4, 31 | gsumval2 13425 |
. . . 4
|
| 33 | 9 | uzidd 9733 |
. . . . 5
|
| 34 | resexg 5044 |
. . . . . . . . . 10
| |
| 35 | 14, 34 | syl 14 |
. . . . . . . . 9
|
| 36 | fvexg 5645 |
. . . . . . . . 9
| |
| 37 | 35, 15, 36 | sylancl 413 |
. . . . . . . 8
|
| 38 | 37 | adantr 276 |
. . . . . . 7
|
| 39 | 9, 38, 27 | seq3-1 10679 |
. . . . . 6
|
| 40 | eluzfz1 10223 |
. . . . . . . 8
| |
| 41 | 4, 40 | syl 14 |
. . . . . . 7
|
| 42 | 41 | fvresd 5651 |
. . . . . 6
|
| 43 | 39, 42 | eqtrd 2262 |
. . . . 5
|
| 44 | fzp1ss 10265 |
. . . . . . . 8
| |
| 45 | 9, 44 | syl 14 |
. . . . . . 7
|
| 46 | 45 | sselda 3224 |
. . . . . 6
|
| 47 | 46 | fvresd 5651 |
. . . . 5
|
| 48 | 33, 43, 38, 18, 27, 4, 47 | seq3fveq2 10692 |
. . . 4
|
| 49 | 32, 48 | eqtr2d 2263 |
. . 3
|
| 50 | 49 | oveq1d 6015 |
. 2
|
| 51 | 8, 28, 50 | 3eqtrd 2266 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-1o 6560 df-er 6678 df-en 6886 df-fin 6888 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-2 9165 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-seqfrec 10665 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-0g 13286 df-igsum 13287 |
| This theorem is referenced by: gsumfzconst 13873 gsumfzfsumlemm 14545 |
| Copyright terms: Public domain | W3C validator |