| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzreidx | Unicode version | ||
| Description: Re-index a finite group
sum using a bijection. Corresponds to the first
equation in [Lang] p. 5 with |
| Ref | Expression |
|---|---|
| gsumreidx.b |
|
| gsumreidx.z |
|
| gsumreidx.g |
|
| gsumfzreidx.m |
|
| gsumfzreidx.n |
|
| gsumreidx.f |
|
| gsumreidx.h |
|
| Ref | Expression |
|---|---|
| gsumfzreidx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . 4
| |
| 2 | 1 | iftrued 3609 |
. . 3
|
| 3 | gsumreidx.b |
. . . . 5
| |
| 4 | gsumreidx.z |
. . . . 5
| |
| 5 | eqid 2229 |
. . . . 5
| |
| 6 | gsumreidx.g |
. . . . 5
| |
| 7 | gsumfzreidx.m |
. . . . 5
| |
| 8 | gsumfzreidx.n |
. . . . 5
| |
| 9 | gsumreidx.f |
. . . . 5
| |
| 10 | 3, 4, 5, 6, 7, 8, 9 | gsumfzval 13432 |
. . . 4
|
| 11 | 10 | adantr 276 |
. . 3
|
| 12 | gsumreidx.h |
. . . . . . . 8
| |
| 13 | f1of 5574 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl 14 |
. . . . . . 7
|
| 15 | fco 5491 |
. . . . . . 7
| |
| 16 | 9, 14, 15 | syl2anc 411 |
. . . . . 6
|
| 17 | 3, 4, 5, 6, 7, 8, 16 | gsumfzval 13432 |
. . . . 5
|
| 18 | 17 | adantr 276 |
. . . 4
|
| 19 | 1 | iftrued 3609 |
. . . 4
|
| 20 | 18, 19 | eqtrd 2262 |
. . 3
|
| 21 | 2, 11, 20 | 3eqtr4d 2272 |
. 2
|
| 22 | 6 | cmnmndd 13853 |
. . . . . 6
|
| 23 | 22 | ad2antrr 488 |
. . . . 5
|
| 24 | simprl 529 |
. . . . 5
| |
| 25 | simprr 531 |
. . . . 5
| |
| 26 | 3, 5 | mndcl 13464 |
. . . . 5
|
| 27 | 23, 24, 25, 26 | syl3anc 1271 |
. . . 4
|
| 28 | 6 | ad2antrr 488 |
. . . . 5
|
| 29 | 3, 5 | cmncom 13847 |
. . . . 5
|
| 30 | 28, 24, 25, 29 | syl3anc 1271 |
. . . 4
|
| 31 | 22 | ad2antrr 488 |
. . . . 5
|
| 32 | 3, 5 | mndass 13465 |
. . . . 5
|
| 33 | 31, 32 | sylancom 420 |
. . . 4
|
| 34 | 7 | adantr 276 |
. . . . 5
|
| 35 | 8 | adantr 276 |
. . . . 5
|
| 36 | 34 | zred 9577 |
. . . . . 6
|
| 37 | 35 | zred 9577 |
. . . . . 6
|
| 38 | simpr 110 |
. . . . . 6
| |
| 39 | 36, 37, 38 | nltled 8275 |
. . . . 5
|
| 40 | eluz2 9736 |
. . . . 5
| |
| 41 | 34, 35, 39, 40 | syl3anbrc 1205 |
. . . 4
|
| 42 | ssidd 3245 |
. . . 4
| |
| 43 | plusgslid 13153 |
. . . . . . 7
| |
| 44 | 43 | slotex 13067 |
. . . . . 6
|
| 45 | 6, 44 | syl 14 |
. . . . 5
|
| 46 | 45 | adantr 276 |
. . . 4
|
| 47 | 12 | adantr 276 |
. . . . 5
|
| 48 | f1ocnv 5587 |
. . . . 5
| |
| 49 | 47, 48 | syl 14 |
. . . 4
|
| 50 | 16 | adantr 276 |
. . . . 5
|
| 51 | 50 | ffvelcdmda 5772 |
. . . 4
|
| 52 | 14 | ad2antrr 488 |
. . . . . 6
|
| 53 | 12, 48 | syl 14 |
. . . . . . . . 9
|
| 54 | f1of 5574 |
. . . . . . . . 9
| |
| 55 | 53, 54 | syl 14 |
. . . . . . . 8
|
| 56 | 55 | adantr 276 |
. . . . . . 7
|
| 57 | 56 | ffvelcdmda 5772 |
. . . . . 6
|
| 58 | fvco3 5707 |
. . . . . 6
| |
| 59 | 52, 57, 58 | syl2anc 411 |
. . . . 5
|
| 60 | f1ocnvfv2 5908 |
. . . . . . 7
| |
| 61 | 47, 60 | sylan 283 |
. . . . . 6
|
| 62 | 61 | fveq2d 5633 |
. . . . 5
|
| 63 | 59, 62 | eqtr2d 2263 |
. . . 4
|
| 64 | 7, 8 | fzfigd 10661 |
. . . . . . 7
|
| 65 | 9, 64 | fexd 5873 |
. . . . . 6
|
| 66 | 14, 64 | fexd 5873 |
. . . . . 6
|
| 67 | coexg 5273 |
. . . . . 6
| |
| 68 | 65, 66, 67 | syl2anc 411 |
. . . . 5
|
| 69 | 68 | adantr 276 |
. . . 4
|
| 70 | 9 | adantr 276 |
. . . . 5
|
| 71 | 64 | adantr 276 |
. . . . 5
|
| 72 | 70, 71 | fexd 5873 |
. . . 4
|
| 73 | 27, 30, 33, 41, 42, 46, 49, 51, 63, 69, 72 | seqf1og 10751 |
. . 3
|
| 74 | 10 | adantr 276 |
. . . 4
|
| 75 | 38 | iffalsed 3612 |
. . . 4
|
| 76 | 74, 75 | eqtrd 2262 |
. . 3
|
| 77 | 17 | adantr 276 |
. . . 4
|
| 78 | 38 | iffalsed 3612 |
. . . 4
|
| 79 | 77, 78 | eqtrd 2262 |
. . 3
|
| 80 | 73, 76, 79 | 3eqtr4d 2272 |
. 2
|
| 81 | zdclt 9532 |
. . . 4
| |
| 82 | 8, 7, 81 | syl2anc 411 |
. . 3
|
| 83 | exmiddc 841 |
. . 3
| |
| 84 | 82, 83 | syl 14 |
. 2
|
| 85 | 21, 80, 84 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-1o 6568 df-er 6688 df-en 6896 df-fin 6898 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-inn 9119 df-2 9177 df-n0 9378 df-z 9455 df-uz 9731 df-fz 10213 df-fzo 10347 df-seqfrec 10678 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-0g 13299 df-igsum 13300 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-cmn 13831 |
| This theorem is referenced by: lgseisenlem3 15759 |
| Copyright terms: Public domain | W3C validator |