| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzreidx | Unicode version | ||
| Description: Re-index a finite group
sum using a bijection. Corresponds to the first
equation in [Lang] p. 5 with |
| Ref | Expression |
|---|---|
| gsumreidx.b |
|
| gsumreidx.z |
|
| gsumreidx.g |
|
| gsumfzreidx.m |
|
| gsumfzreidx.n |
|
| gsumreidx.f |
|
| gsumreidx.h |
|
| Ref | Expression |
|---|---|
| gsumfzreidx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . 4
| |
| 2 | 1 | iftrued 3609 |
. . 3
|
| 3 | gsumreidx.b |
. . . . 5
| |
| 4 | gsumreidx.z |
. . . . 5
| |
| 5 | eqid 2229 |
. . . . 5
| |
| 6 | gsumreidx.g |
. . . . 5
| |
| 7 | gsumfzreidx.m |
. . . . 5
| |
| 8 | gsumfzreidx.n |
. . . . 5
| |
| 9 | gsumreidx.f |
. . . . 5
| |
| 10 | 3, 4, 5, 6, 7, 8, 9 | gsumfzval 13410 |
. . . 4
|
| 11 | 10 | adantr 276 |
. . 3
|
| 12 | gsumreidx.h |
. . . . . . . 8
| |
| 13 | f1of 5568 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl 14 |
. . . . . . 7
|
| 15 | fco 5485 |
. . . . . . 7
| |
| 16 | 9, 14, 15 | syl2anc 411 |
. . . . . 6
|
| 17 | 3, 4, 5, 6, 7, 8, 16 | gsumfzval 13410 |
. . . . 5
|
| 18 | 17 | adantr 276 |
. . . 4
|
| 19 | 1 | iftrued 3609 |
. . . 4
|
| 20 | 18, 19 | eqtrd 2262 |
. . 3
|
| 21 | 2, 11, 20 | 3eqtr4d 2272 |
. 2
|
| 22 | 6 | cmnmndd 13831 |
. . . . . 6
|
| 23 | 22 | ad2antrr 488 |
. . . . 5
|
| 24 | simprl 529 |
. . . . 5
| |
| 25 | simprr 531 |
. . . . 5
| |
| 26 | 3, 5 | mndcl 13442 |
. . . . 5
|
| 27 | 23, 24, 25, 26 | syl3anc 1271 |
. . . 4
|
| 28 | 6 | ad2antrr 488 |
. . . . 5
|
| 29 | 3, 5 | cmncom 13825 |
. . . . 5
|
| 30 | 28, 24, 25, 29 | syl3anc 1271 |
. . . 4
|
| 31 | 22 | ad2antrr 488 |
. . . . 5
|
| 32 | 3, 5 | mndass 13443 |
. . . . 5
|
| 33 | 31, 32 | sylancom 420 |
. . . 4
|
| 34 | 7 | adantr 276 |
. . . . 5
|
| 35 | 8 | adantr 276 |
. . . . 5
|
| 36 | 34 | zred 9557 |
. . . . . 6
|
| 37 | 35 | zred 9557 |
. . . . . 6
|
| 38 | simpr 110 |
. . . . . 6
| |
| 39 | 36, 37, 38 | nltled 8255 |
. . . . 5
|
| 40 | eluz2 9716 |
. . . . 5
| |
| 41 | 34, 35, 39, 40 | syl3anbrc 1205 |
. . . 4
|
| 42 | ssidd 3245 |
. . . 4
| |
| 43 | plusgslid 13131 |
. . . . . . 7
| |
| 44 | 43 | slotex 13045 |
. . . . . 6
|
| 45 | 6, 44 | syl 14 |
. . . . 5
|
| 46 | 45 | adantr 276 |
. . . 4
|
| 47 | 12 | adantr 276 |
. . . . 5
|
| 48 | f1ocnv 5581 |
. . . . 5
| |
| 49 | 47, 48 | syl 14 |
. . . 4
|
| 50 | 16 | adantr 276 |
. . . . 5
|
| 51 | 50 | ffvelcdmda 5763 |
. . . 4
|
| 52 | 14 | ad2antrr 488 |
. . . . . 6
|
| 53 | 12, 48 | syl 14 |
. . . . . . . . 9
|
| 54 | f1of 5568 |
. . . . . . . . 9
| |
| 55 | 53, 54 | syl 14 |
. . . . . . . 8
|
| 56 | 55 | adantr 276 |
. . . . . . 7
|
| 57 | 56 | ffvelcdmda 5763 |
. . . . . 6
|
| 58 | fvco3 5698 |
. . . . . 6
| |
| 59 | 52, 57, 58 | syl2anc 411 |
. . . . 5
|
| 60 | f1ocnvfv2 5895 |
. . . . . . 7
| |
| 61 | 47, 60 | sylan 283 |
. . . . . 6
|
| 62 | 61 | fveq2d 5627 |
. . . . 5
|
| 63 | 59, 62 | eqtr2d 2263 |
. . . 4
|
| 64 | 7, 8 | fzfigd 10640 |
. . . . . . 7
|
| 65 | 9, 64 | fexd 5862 |
. . . . . 6
|
| 66 | 14, 64 | fexd 5862 |
. . . . . 6
|
| 67 | coexg 5269 |
. . . . . 6
| |
| 68 | 65, 66, 67 | syl2anc 411 |
. . . . 5
|
| 69 | 68 | adantr 276 |
. . . 4
|
| 70 | 9 | adantr 276 |
. . . . 5
|
| 71 | 64 | adantr 276 |
. . . . 5
|
| 72 | 70, 71 | fexd 5862 |
. . . 4
|
| 73 | 27, 30, 33, 41, 42, 46, 49, 51, 63, 69, 72 | seqf1og 10730 |
. . 3
|
| 74 | 10 | adantr 276 |
. . . 4
|
| 75 | 38 | iffalsed 3612 |
. . . 4
|
| 76 | 74, 75 | eqtrd 2262 |
. . 3
|
| 77 | 17 | adantr 276 |
. . . 4
|
| 78 | 38 | iffalsed 3612 |
. . . 4
|
| 79 | 77, 78 | eqtrd 2262 |
. . 3
|
| 80 | 73, 76, 79 | 3eqtr4d 2272 |
. 2
|
| 81 | zdclt 9512 |
. . . 4
| |
| 82 | 8, 7, 81 | syl2anc 411 |
. . 3
|
| 83 | exmiddc 841 |
. . 3
| |
| 84 | 82, 83 | syl 14 |
. 2
|
| 85 | 21, 80, 84 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-1o 6552 df-er 6670 df-en 6878 df-fin 6880 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-inn 9099 df-2 9157 df-n0 9358 df-z 9435 df-uz 9711 df-fz 10193 df-fzo 10327 df-seqfrec 10657 df-ndx 13021 df-slot 13022 df-base 13024 df-plusg 13109 df-0g 13277 df-igsum 13278 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-cmn 13809 |
| This theorem is referenced by: lgseisenlem3 15736 |
| Copyright terms: Public domain | W3C validator |