ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzreidx Unicode version

Theorem gsumfzreidx 13860
Description: Re-index a finite group sum using a bijection. Corresponds to the first equation in [Lang] p. 5 with  M  =  1. (Contributed by AV, 26-Dec-2023.)
Hypotheses
Ref Expression
gsumreidx.b  |-  B  =  ( Base `  G
)
gsumreidx.z  |-  .0.  =  ( 0g `  G )
gsumreidx.g  |-  ( ph  ->  G  e. CMnd )
gsumfzreidx.m  |-  ( ph  ->  M  e.  ZZ )
gsumfzreidx.n  |-  ( ph  ->  N  e.  ZZ )
gsumreidx.f  |-  ( ph  ->  F : ( M ... N ) --> B )
gsumreidx.h  |-  ( ph  ->  H : ( M ... N ) -1-1-onto-> ( M ... N ) )
Assertion
Ref Expression
gsumfzreidx  |-  ( ph  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) )

Proof of Theorem gsumfzreidx
Dummy variables  k  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  N  <  M )
21iftrued 3609 . . 3  |-  ( (
ph  /\  N  <  M )  ->  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G
) ,  F ) `
 N ) )  =  .0.  )
3 gsumreidx.b . . . . 5  |-  B  =  ( Base `  G
)
4 gsumreidx.z . . . . 5  |-  .0.  =  ( 0g `  G )
5 eqid 2229 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
6 gsumreidx.g . . . . 5  |-  ( ph  ->  G  e. CMnd )
7 gsumfzreidx.m . . . . 5  |-  ( ph  ->  M  e.  ZZ )
8 gsumfzreidx.n . . . . 5  |-  ( ph  ->  N  e.  ZZ )
9 gsumreidx.f . . . . 5  |-  ( ph  ->  F : ( M ... N ) --> B )
103, 4, 5, 6, 7, 8, 9gsumfzval 13410 . . . 4  |-  ( ph  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
1110adantr 276 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) ) )
12 gsumreidx.h . . . . . . . 8  |-  ( ph  ->  H : ( M ... N ) -1-1-onto-> ( M ... N ) )
13 f1of 5568 . . . . . . . 8  |-  ( H : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  H :
( M ... N
) --> ( M ... N ) )
1412, 13syl 14 . . . . . . 7  |-  ( ph  ->  H : ( M ... N ) --> ( M ... N ) )
15 fco 5485 . . . . . . 7  |-  ( ( F : ( M ... N ) --> B  /\  H : ( M ... N ) --> ( M ... N
) )  ->  ( F  o.  H ) : ( M ... N ) --> B )
169, 14, 15syl2anc 411 . . . . . 6  |-  ( ph  ->  ( F  o.  H
) : ( M ... N ) --> B )
173, 4, 5, 6, 7, 8, 16gsumfzval 13410 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( F  o.  H
) )  =  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G ) ,  ( F  o.  H ) ) `  N ) ) )
1817adantr 276 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  ( F  o.  H ) )  =  if ( N  <  M ,  .0.  ,  (  seq M
( ( +g  `  G
) ,  ( F  o.  H ) ) `
 N ) ) )
191iftrued 3609 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G
) ,  ( F  o.  H ) ) `
 N ) )  =  .0.  )
2018, 19eqtrd 2262 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  ( F  o.  H ) )  =  .0.  )
212, 11, 203eqtr4d 2272 . 2  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  ( G 
gsumg  ( F  o.  H
) ) )
226cmnmndd 13831 . . . . . 6  |-  ( ph  ->  G  e.  Mnd )
2322ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  G  e.  Mnd )
24 simprl 529 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  x  e.  B )
25 simprr 531 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  y  e.  B )
263, 5mndcl 13442 . . . . 5  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
2723, 24, 25, 26syl3anc 1271 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) y )  e.  B )
286ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  G  e. CMnd )
293, 5cmncom 13825 . . . . 5  |-  ( ( G  e. CMnd  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) )
3028, 24, 25, 29syl3anc 1271 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) )
3122ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  G  e.  Mnd )
323, 5mndass 13443 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x ( +g  `  G ) y ) ( +g  `  G
) z )  =  ( x ( +g  `  G ) ( y ( +g  `  G
) z ) ) )
3331, 32sylancom 420 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x ( +g  `  G ) y ) ( +g  `  G
) z )  =  ( x ( +g  `  G ) ( y ( +g  `  G
) z ) ) )
347adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  ZZ )
358adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ZZ )
3634zred 9557 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  RR )
3735zred 9557 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  RR )
38 simpr 110 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  -.  N  <  M )
3936, 37, 38nltled 8255 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  <_  N )
40 eluz2 9716 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
4134, 35, 39, 40syl3anbrc 1205 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ( ZZ>= `  M )
)
42 ssidd 3245 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  B  C_  B )
43 plusgslid 13131 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4443slotex 13045 . . . . . 6  |-  ( G  e. CMnd  ->  ( +g  `  G
)  e.  _V )
456, 44syl 14 . . . . 5  |-  ( ph  ->  ( +g  `  G
)  e.  _V )
4645adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( +g  `  G )  e. 
_V )
4712adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  H : ( M ... N ) -1-1-onto-> ( M ... N
) )
48 f1ocnv 5581 . . . . 5  |-  ( H : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' H : ( M ... N ) -1-1-onto-> ( M ... N
) )
4947, 48syl 14 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  `' H : ( M ... N ) -1-1-onto-> ( M ... N
) )
5016adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  ( F  o.  H ) : ( M ... N ) --> B )
5150ffvelcdmda 5763 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  -> 
( ( F  o.  H ) `  x
)  e.  B )
5214ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  -.  N  <  M )  /\  k  e.  ( M ... N ) )  ->  H : ( M ... N ) --> ( M ... N ) )
5312, 48syl 14 . . . . . . . . 9  |-  ( ph  ->  `' H : ( M ... N ) -1-1-onto-> ( M ... N ) )
54 f1of 5568 . . . . . . . . 9  |-  ( `' H : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' H : ( M ... N ) --> ( M ... N ) )
5553, 54syl 14 . . . . . . . 8  |-  ( ph  ->  `' H : ( M ... N ) --> ( M ... N ) )
5655adantr 276 . . . . . . 7  |-  ( (
ph  /\  -.  N  <  M )  ->  `' H : ( M ... N ) --> ( M ... N ) )
5756ffvelcdmda 5763 . . . . . 6  |-  ( ( ( ph  /\  -.  N  <  M )  /\  k  e.  ( M ... N ) )  -> 
( `' H `  k )  e.  ( M ... N ) )
58 fvco3 5698 . . . . . 6  |-  ( ( H : ( M ... N ) --> ( M ... N )  /\  ( `' H `  k )  e.  ( M ... N ) )  ->  ( ( F  o.  H ) `  ( `' H `  k ) )  =  ( F `  ( H `  ( `' H `  k )
) ) )
5952, 57, 58syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  k  e.  ( M ... N ) )  -> 
( ( F  o.  H ) `  ( `' H `  k ) )  =  ( F `
 ( H `  ( `' H `  k ) ) ) )
60 f1ocnvfv2 5895 . . . . . . 7  |-  ( ( H : ( M ... N ) -1-1-onto-> ( M ... N )  /\  k  e.  ( M ... N ) )  -> 
( H `  ( `' H `  k ) )  =  k )
6147, 60sylan 283 . . . . . 6  |-  ( ( ( ph  /\  -.  N  <  M )  /\  k  e.  ( M ... N ) )  -> 
( H `  ( `' H `  k ) )  =  k )
6261fveq2d 5627 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  k  e.  ( M ... N ) )  -> 
( F `  ( H `  ( `' H `  k )
) )  =  ( F `  k ) )
6359, 62eqtr2d 2263 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  k  e.  ( M ... N ) )  -> 
( F `  k
)  =  ( ( F  o.  H ) `
 ( `' H `  k ) ) )
647, 8fzfigd 10640 . . . . . . 7  |-  ( ph  ->  ( M ... N
)  e.  Fin )
659, 64fexd 5862 . . . . . 6  |-  ( ph  ->  F  e.  _V )
6614, 64fexd 5862 . . . . . 6  |-  ( ph  ->  H  e.  _V )
67 coexg 5269 . . . . . 6  |-  ( ( F  e.  _V  /\  H  e.  _V )  ->  ( F  o.  H
)  e.  _V )
6865, 66, 67syl2anc 411 . . . . 5  |-  ( ph  ->  ( F  o.  H
)  e.  _V )
6968adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( F  o.  H )  e.  _V )
709adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  F : ( M ... N ) --> B )
7164adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  ( M ... N )  e. 
Fin )
7270, 71fexd 5862 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  F  e.  _V )
7327, 30, 33, 41, 42, 46, 49, 51, 63, 69, 72seqf1og 10730 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  (  seq M ( ( +g  `  G ) ,  F
) `  N )  =  (  seq M ( ( +g  `  G
) ,  ( F  o.  H ) ) `
 N ) )
7410adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
7538iffalsed 3612 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  if ( N  <  M ,  .0.  ,  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) )  =  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) )
7674, 75eqtrd 2262 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  (  seq M ( ( +g  `  G ) ,  F ) `  N ) )
7717adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  ( F  o.  H
) )  =  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G ) ,  ( F  o.  H ) ) `  N ) ) )
7838iffalsed 3612 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  if ( N  <  M ,  .0.  ,  (  seq M
( ( +g  `  G
) ,  ( F  o.  H ) ) `
 N ) )  =  (  seq M
( ( +g  `  G
) ,  ( F  o.  H ) ) `
 N ) )
7977, 78eqtrd 2262 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  ( F  o.  H
) )  =  (  seq M ( ( +g  `  G ) ,  ( F  o.  H ) ) `  N ) )
8073, 76, 793eqtr4d 2272 . 2  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) )
81 zdclt 9512 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  -> DECID  N  <  M )
828, 7, 81syl2anc 411 . . 3  |-  ( ph  -> DECID  N  <  M )
83 exmiddc 841 . . 3  |-  (DECID  N  < 
M  ->  ( N  <  M  \/  -.  N  <  M ) )
8482, 83syl 14 . 2  |-  ( ph  ->  ( N  <  M  \/  -.  N  <  M
) )
8521, 80, 84mpjaodan 803 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839    /\ w3a 1002    = wceq 1395    e. wcel 2200   _Vcvv 2799   ifcif 3602   class class class wbr 4082   `'ccnv 4715    o. ccom 4720   -->wf 5310   -1-1-onto->wf1o 5313   ` cfv 5314  (class class class)co 5994   Fincfn 6877    < clt 8169    <_ cle 8170   ZZcz 9434   ZZ>=cuz 9710   ...cfz 10192    seqcseq 10656   Basecbs 13018   +g cplusg 13096   0gc0g 13275    gsumg cgsu 13276   Mndcmnd 13435  CMndccmn 13807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-1o 6552  df-er 6670  df-en 6878  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-inn 9099  df-2 9157  df-n0 9358  df-z 9435  df-uz 9711  df-fz 10193  df-fzo 10327  df-seqfrec 10657  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-0g 13277  df-igsum 13278  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-cmn 13809
This theorem is referenced by:  lgseisenlem3  15736
  Copyright terms: Public domain W3C validator