ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzreidx Unicode version

Theorem gsumfzreidx 13396
Description: Re-index a finite group sum using a bijection. Corresponds to the first equation in [Lang] p. 5 with  M  =  1. (Contributed by AV, 26-Dec-2023.)
Hypotheses
Ref Expression
gsumreidx.b  |-  B  =  ( Base `  G
)
gsumreidx.z  |-  .0.  =  ( 0g `  G )
gsumreidx.g  |-  ( ph  ->  G  e. CMnd )
gsumfzreidx.m  |-  ( ph  ->  M  e.  ZZ )
gsumfzreidx.n  |-  ( ph  ->  N  e.  ZZ )
gsumreidx.f  |-  ( ph  ->  F : ( M ... N ) --> B )
gsumreidx.h  |-  ( ph  ->  H : ( M ... N ) -1-1-onto-> ( M ... N ) )
Assertion
Ref Expression
gsumfzreidx  |-  ( ph  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) )

Proof of Theorem gsumfzreidx
Dummy variables  k  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  N  <  M )
21iftrued 3564 . . 3  |-  ( (
ph  /\  N  <  M )  ->  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G
) ,  F ) `
 N ) )  =  .0.  )
3 gsumreidx.b . . . . 5  |-  B  =  ( Base `  G
)
4 gsumreidx.z . . . . 5  |-  .0.  =  ( 0g `  G )
5 eqid 2193 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
6 gsumreidx.g . . . . 5  |-  ( ph  ->  G  e. CMnd )
7 gsumfzreidx.m . . . . 5  |-  ( ph  ->  M  e.  ZZ )
8 gsumfzreidx.n . . . . 5  |-  ( ph  ->  N  e.  ZZ )
9 gsumreidx.f . . . . 5  |-  ( ph  ->  F : ( M ... N ) --> B )
103, 4, 5, 6, 7, 8, 9gsumfzval 12964 . . . 4  |-  ( ph  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
1110adantr 276 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) ) )
12 gsumreidx.h . . . . . . . 8  |-  ( ph  ->  H : ( M ... N ) -1-1-onto-> ( M ... N ) )
13 f1of 5492 . . . . . . . 8  |-  ( H : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  H :
( M ... N
) --> ( M ... N ) )
1412, 13syl 14 . . . . . . 7  |-  ( ph  ->  H : ( M ... N ) --> ( M ... N ) )
15 fco 5411 . . . . . . 7  |-  ( ( F : ( M ... N ) --> B  /\  H : ( M ... N ) --> ( M ... N
) )  ->  ( F  o.  H ) : ( M ... N ) --> B )
169, 14, 15syl2anc 411 . . . . . 6  |-  ( ph  ->  ( F  o.  H
) : ( M ... N ) --> B )
173, 4, 5, 6, 7, 8, 16gsumfzval 12964 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( F  o.  H
) )  =  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G ) ,  ( F  o.  H ) ) `  N ) ) )
1817adantr 276 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  ( F  o.  H ) )  =  if ( N  <  M ,  .0.  ,  (  seq M
( ( +g  `  G
) ,  ( F  o.  H ) ) `
 N ) ) )
191iftrued 3564 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G
) ,  ( F  o.  H ) ) `
 N ) )  =  .0.  )
2018, 19eqtrd 2226 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  ( F  o.  H ) )  =  .0.  )
212, 11, 203eqtr4d 2236 . 2  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  ( G 
gsumg  ( F  o.  H
) ) )
226cmnmndd 13367 . . . . . 6  |-  ( ph  ->  G  e.  Mnd )
2322ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  G  e.  Mnd )
24 simprl 529 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  x  e.  B )
25 simprr 531 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  y  e.  B )
263, 5mndcl 12994 . . . . 5  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
2723, 24, 25, 26syl3anc 1249 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) y )  e.  B )
286ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  G  e. CMnd )
293, 5cmncom 13361 . . . . 5  |-  ( ( G  e. CMnd  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) )
3028, 24, 25, 29syl3anc 1249 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) )
3122ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  G  e.  Mnd )
323, 5mndass 12995 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x ( +g  `  G ) y ) ( +g  `  G
) z )  =  ( x ( +g  `  G ) ( y ( +g  `  G
) z ) ) )
3331, 32sylancom 420 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x ( +g  `  G ) y ) ( +g  `  G
) z )  =  ( x ( +g  `  G ) ( y ( +g  `  G
) z ) ) )
347adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  ZZ )
358adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ZZ )
3634zred 9429 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  RR )
3735zred 9429 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  RR )
38 simpr 110 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  -.  N  <  M )
3936, 37, 38nltled 8130 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  <_  N )
40 eluz2 9588 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
4134, 35, 39, 40syl3anbrc 1183 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ( ZZ>= `  M )
)
42 ssidd 3200 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  B  C_  B )
43 plusgslid 12720 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4443slotex 12635 . . . . . 6  |-  ( G  e. CMnd  ->  ( +g  `  G
)  e.  _V )
456, 44syl 14 . . . . 5  |-  ( ph  ->  ( +g  `  G
)  e.  _V )
4645adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( +g  `  G )  e. 
_V )
4712adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  H : ( M ... N ) -1-1-onto-> ( M ... N
) )
48 f1ocnv 5505 . . . . 5  |-  ( H : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' H : ( M ... N ) -1-1-onto-> ( M ... N
) )
4947, 48syl 14 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  `' H : ( M ... N ) -1-1-onto-> ( M ... N
) )
5016adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  ( F  o.  H ) : ( M ... N ) --> B )
5150ffvelcdmda 5685 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  -> 
( ( F  o.  H ) `  x
)  e.  B )
5214ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  -.  N  <  M )  /\  k  e.  ( M ... N ) )  ->  H : ( M ... N ) --> ( M ... N ) )
5312, 48syl 14 . . . . . . . . 9  |-  ( ph  ->  `' H : ( M ... N ) -1-1-onto-> ( M ... N ) )
54 f1of 5492 . . . . . . . . 9  |-  ( `' H : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' H : ( M ... N ) --> ( M ... N ) )
5553, 54syl 14 . . . . . . . 8  |-  ( ph  ->  `' H : ( M ... N ) --> ( M ... N ) )
5655adantr 276 . . . . . . 7  |-  ( (
ph  /\  -.  N  <  M )  ->  `' H : ( M ... N ) --> ( M ... N ) )
5756ffvelcdmda 5685 . . . . . 6  |-  ( ( ( ph  /\  -.  N  <  M )  /\  k  e.  ( M ... N ) )  -> 
( `' H `  k )  e.  ( M ... N ) )
58 fvco3 5620 . . . . . 6  |-  ( ( H : ( M ... N ) --> ( M ... N )  /\  ( `' H `  k )  e.  ( M ... N ) )  ->  ( ( F  o.  H ) `  ( `' H `  k ) )  =  ( F `  ( H `  ( `' H `  k )
) ) )
5952, 57, 58syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  k  e.  ( M ... N ) )  -> 
( ( F  o.  H ) `  ( `' H `  k ) )  =  ( F `
 ( H `  ( `' H `  k ) ) ) )
60 f1ocnvfv2 5813 . . . . . . 7  |-  ( ( H : ( M ... N ) -1-1-onto-> ( M ... N )  /\  k  e.  ( M ... N ) )  -> 
( H `  ( `' H `  k ) )  =  k )
6147, 60sylan 283 . . . . . 6  |-  ( ( ( ph  /\  -.  N  <  M )  /\  k  e.  ( M ... N ) )  -> 
( H `  ( `' H `  k ) )  =  k )
6261fveq2d 5550 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  k  e.  ( M ... N ) )  -> 
( F `  ( H `  ( `' H `  k )
) )  =  ( F `  k ) )
6359, 62eqtr2d 2227 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  k  e.  ( M ... N ) )  -> 
( F `  k
)  =  ( ( F  o.  H ) `
 ( `' H `  k ) ) )
647, 8fzfigd 10492 . . . . . . 7  |-  ( ph  ->  ( M ... N
)  e.  Fin )
659, 64fexd 5780 . . . . . 6  |-  ( ph  ->  F  e.  _V )
6614, 64fexd 5780 . . . . . 6  |-  ( ph  ->  H  e.  _V )
67 coexg 5202 . . . . . 6  |-  ( ( F  e.  _V  /\  H  e.  _V )  ->  ( F  o.  H
)  e.  _V )
6865, 66, 67syl2anc 411 . . . . 5  |-  ( ph  ->  ( F  o.  H
)  e.  _V )
6968adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( F  o.  H )  e.  _V )
709adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  F : ( M ... N ) --> B )
7164adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  ( M ... N )  e. 
Fin )
7270, 71fexd 5780 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  F  e.  _V )
7327, 30, 33, 41, 42, 46, 49, 51, 63, 69, 72seqf1og 10582 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  (  seq M ( ( +g  `  G ) ,  F
) `  N )  =  (  seq M ( ( +g  `  G
) ,  ( F  o.  H ) ) `
 N ) )
7410adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
7538iffalsed 3567 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  if ( N  <  M ,  .0.  ,  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) )  =  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) )
7674, 75eqtrd 2226 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  (  seq M ( ( +g  `  G ) ,  F ) `  N ) )
7717adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  ( F  o.  H
) )  =  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G ) ,  ( F  o.  H ) ) `  N ) ) )
7838iffalsed 3567 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  if ( N  <  M ,  .0.  ,  (  seq M
( ( +g  `  G
) ,  ( F  o.  H ) ) `
 N ) )  =  (  seq M
( ( +g  `  G
) ,  ( F  o.  H ) ) `
 N ) )
7977, 78eqtrd 2226 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  ( F  o.  H
) )  =  (  seq M ( ( +g  `  G ) ,  ( F  o.  H ) ) `  N ) )
8073, 76, 793eqtr4d 2236 . 2  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) )
81 zdclt 9384 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  -> DECID  N  <  M )
828, 7, 81syl2anc 411 . . 3  |-  ( ph  -> DECID  N  <  M )
83 exmiddc 837 . . 3  |-  (DECID  N  < 
M  ->  ( N  <  M  \/  -.  N  <  M ) )
8482, 83syl 14 . 2  |-  ( ph  ->  ( N  <  M  \/  -.  N  <  M
) )
8521, 80, 84mpjaodan 799 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2164   _Vcvv 2760   ifcif 3557   class class class wbr 4029   `'ccnv 4654    o. ccom 4659   -->wf 5242   -1-1-onto->wf1o 5245   ` cfv 5246  (class class class)co 5910   Fincfn 6785    < clt 8044    <_ cle 8045   ZZcz 9307   ZZ>=cuz 9582   ...cfz 10064    seqcseq 10508   Basecbs 12608   +g cplusg 12685   0gc0g 12857    gsumg cgsu 12858   Mndcmnd 12987  CMndccmn 13343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-iinf 4616  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-mulrcl 7961  ax-addcom 7962  ax-mulcom 7963  ax-addass 7964  ax-mulass 7965  ax-distr 7966  ax-i2m1 7967  ax-0lt1 7968  ax-1rid 7969  ax-0id 7970  ax-rnegex 7971  ax-precex 7972  ax-cnre 7973  ax-pre-ltirr 7974  ax-pre-ltwlin 7975  ax-pre-lttrn 7976  ax-pre-apti 7977  ax-pre-ltadd 7978  ax-pre-mulgt0 7979
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4322  df-iord 4395  df-on 4397  df-ilim 4398  df-suc 4400  df-iom 4619  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-riota 5865  df-ov 5913  df-oprab 5914  df-mpo 5915  df-1st 6184  df-2nd 6185  df-recs 6349  df-frec 6435  df-1o 6460  df-er 6578  df-en 6786  df-fin 6788  df-pnf 8046  df-mnf 8047  df-xr 8048  df-ltxr 8049  df-le 8050  df-sub 8182  df-neg 8183  df-reap 8584  df-ap 8591  df-inn 8973  df-2 9031  df-n0 9231  df-z 9308  df-uz 9583  df-fz 10065  df-fzo 10199  df-seqfrec 10509  df-ndx 12611  df-slot 12612  df-base 12614  df-plusg 12698  df-0g 12859  df-igsum 12860  df-mgm 12929  df-sgrp 12975  df-mnd 12988  df-cmn 13345
This theorem is referenced by:  lgseisenlem3  15136
  Copyright terms: Public domain W3C validator