| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzcl | Unicode version | ||
| Description: Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 16-Aug-2025.) |
| Ref | Expression |
|---|---|
| gsumcl.b |
|
| gsumcl.z |
|
| gsumfzcl.g |
|
| gsumfzcl.m |
|
| gsumfzcl.n |
|
| gsumfzcl.f |
|
| Ref | Expression |
|---|---|
| gsumfzcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumcl.b |
. . . . . 6
| |
| 2 | gsumcl.z |
. . . . . 6
| |
| 3 | eqid 2196 |
. . . . . 6
| |
| 4 | gsumfzcl.g |
. . . . . 6
| |
| 5 | gsumfzcl.m |
. . . . . 6
| |
| 6 | gsumfzcl.n |
. . . . . 6
| |
| 7 | gsumfzcl.f |
. . . . . 6
| |
| 8 | 1, 2, 3, 4, 5, 6, 7 | gsumfzval 13095 |
. . . . 5
|
| 9 | 8 | adantr 276 |
. . . 4
|
| 10 | simpr 110 |
. . . . 5
| |
| 11 | 10 | iftrued 3569 |
. . . 4
|
| 12 | 9, 11 | eqtrd 2229 |
. . 3
|
| 13 | 1, 2 | mndidcl 13134 |
. . . . 5
|
| 14 | 4, 13 | syl 14 |
. . . 4
|
| 15 | 14 | adantr 276 |
. . 3
|
| 16 | 12, 15 | eqeltrd 2273 |
. 2
|
| 17 | 8 | adantr 276 |
. . . 4
|
| 18 | simpr 110 |
. . . . 5
| |
| 19 | 18 | iffalsed 3572 |
. . . 4
|
| 20 | 17, 19 | eqtrd 2229 |
. . 3
|
| 21 | 5 | adantr 276 |
. . . . 5
|
| 22 | 6 | adantr 276 |
. . . . 5
|
| 23 | 21 | zred 9467 |
. . . . . 6
|
| 24 | 22 | zred 9467 |
. . . . . 6
|
| 25 | 23, 24, 18 | nltled 8166 |
. . . . 5
|
| 26 | eluz2 9626 |
. . . . 5
| |
| 27 | 21, 22, 25, 26 | syl3anbrc 1183 |
. . . 4
|
| 28 | 5, 6 | fzfigd 10542 |
. . . . . . 7
|
| 29 | 7, 28 | fexd 5795 |
. . . . . 6
|
| 30 | 29 | ad2antrr 488 |
. . . . 5
|
| 31 | vex 2766 |
. . . . 5
| |
| 32 | fvexg 5580 |
. . . . 5
| |
| 33 | 30, 31, 32 | sylancl 413 |
. . . 4
|
| 34 | 7 | ad2antrr 488 |
. . . . 5
|
| 35 | simpr 110 |
. . . . 5
| |
| 36 | 34, 35 | ffvelcdmd 5701 |
. . . 4
|
| 37 | 4 | ad2antrr 488 |
. . . . 5
|
| 38 | simprl 529 |
. . . . 5
| |
| 39 | simprr 531 |
. . . . 5
| |
| 40 | 1, 3 | mndcl 13127 |
. . . . 5
|
| 41 | 37, 38, 39, 40 | syl3anc 1249 |
. . . 4
|
| 42 | ssv 3206 |
. . . . 5
| |
| 43 | 42 | a1i 9 |
. . . 4
|
| 44 | simprl 529 |
. . . . 5
| |
| 45 | plusgslid 12817 |
. . . . . . . 8
| |
| 46 | 45 | slotex 12732 |
. . . . . . 7
|
| 47 | 4, 46 | syl 14 |
. . . . . 6
|
| 48 | 47 | ad2antrr 488 |
. . . . 5
|
| 49 | simprr 531 |
. . . . 5
| |
| 50 | ovexg 5959 |
. . . . 5
| |
| 51 | 44, 48, 49, 50 | syl3anc 1249 |
. . . 4
|
| 52 | 27, 33, 36, 41, 43, 51 | seq3clss 10582 |
. . 3
|
| 53 | 20, 52 | eqeltrd 2273 |
. 2
|
| 54 | zdclt 9422 |
. . . 4
| |
| 55 | 6, 5, 54 | syl2anc 411 |
. . 3
|
| 56 | exmiddc 837 |
. . 3
| |
| 57 | 55, 56 | syl 14 |
. 2
|
| 58 | 16, 53, 57 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-1o 6483 df-er 6601 df-en 6809 df-fin 6811 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-2 9068 df-n0 9269 df-z 9346 df-uz 9621 df-fz 10103 df-fzo 10237 df-seqfrec 10559 df-ndx 12708 df-slot 12709 df-base 12711 df-plusg 12795 df-0g 12962 df-igsum 12963 df-mgm 13060 df-sgrp 13106 df-mnd 13121 |
| This theorem is referenced by: gsumfzmhm2 13552 gsumfzfsumlemm 14221 lgseisenlem3 15399 lgseisenlem4 15400 |
| Copyright terms: Public domain | W3C validator |