| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzcl | Unicode version | ||
| Description: Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 16-Aug-2025.) |
| Ref | Expression |
|---|---|
| gsumcl.b |
|
| gsumcl.z |
|
| gsumfzcl.g |
|
| gsumfzcl.m |
|
| gsumfzcl.n |
|
| gsumfzcl.f |
|
| Ref | Expression |
|---|---|
| gsumfzcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumcl.b |
. . . . . 6
| |
| 2 | gsumcl.z |
. . . . . 6
| |
| 3 | eqid 2206 |
. . . . . 6
| |
| 4 | gsumfzcl.g |
. . . . . 6
| |
| 5 | gsumfzcl.m |
. . . . . 6
| |
| 6 | gsumfzcl.n |
. . . . . 6
| |
| 7 | gsumfzcl.f |
. . . . . 6
| |
| 8 | 1, 2, 3, 4, 5, 6, 7 | gsumfzval 13293 |
. . . . 5
|
| 9 | 8 | adantr 276 |
. . . 4
|
| 10 | simpr 110 |
. . . . 5
| |
| 11 | 10 | iftrued 3582 |
. . . 4
|
| 12 | 9, 11 | eqtrd 2239 |
. . 3
|
| 13 | 1, 2 | mndidcl 13332 |
. . . . 5
|
| 14 | 4, 13 | syl 14 |
. . . 4
|
| 15 | 14 | adantr 276 |
. . 3
|
| 16 | 12, 15 | eqeltrd 2283 |
. 2
|
| 17 | 8 | adantr 276 |
. . . 4
|
| 18 | simpr 110 |
. . . . 5
| |
| 19 | 18 | iffalsed 3585 |
. . . 4
|
| 20 | 17, 19 | eqtrd 2239 |
. . 3
|
| 21 | 5 | adantr 276 |
. . . . 5
|
| 22 | 6 | adantr 276 |
. . . . 5
|
| 23 | 21 | zred 9510 |
. . . . . 6
|
| 24 | 22 | zred 9510 |
. . . . . 6
|
| 25 | 23, 24, 18 | nltled 8208 |
. . . . 5
|
| 26 | eluz2 9669 |
. . . . 5
| |
| 27 | 21, 22, 25, 26 | syl3anbrc 1184 |
. . . 4
|
| 28 | 5, 6 | fzfigd 10593 |
. . . . . . 7
|
| 29 | 7, 28 | fexd 5826 |
. . . . . 6
|
| 30 | 29 | ad2antrr 488 |
. . . . 5
|
| 31 | vex 2776 |
. . . . 5
| |
| 32 | fvexg 5607 |
. . . . 5
| |
| 33 | 30, 31, 32 | sylancl 413 |
. . . 4
|
| 34 | 7 | ad2antrr 488 |
. . . . 5
|
| 35 | simpr 110 |
. . . . 5
| |
| 36 | 34, 35 | ffvelcdmd 5728 |
. . . 4
|
| 37 | 4 | ad2antrr 488 |
. . . . 5
|
| 38 | simprl 529 |
. . . . 5
| |
| 39 | simprr 531 |
. . . . 5
| |
| 40 | 1, 3 | mndcl 13325 |
. . . . 5
|
| 41 | 37, 38, 39, 40 | syl3anc 1250 |
. . . 4
|
| 42 | ssv 3219 |
. . . . 5
| |
| 43 | 42 | a1i 9 |
. . . 4
|
| 44 | simprl 529 |
. . . . 5
| |
| 45 | plusgslid 13014 |
. . . . . . . 8
| |
| 46 | 45 | slotex 12929 |
. . . . . . 7
|
| 47 | 4, 46 | syl 14 |
. . . . . 6
|
| 48 | 47 | ad2antrr 488 |
. . . . 5
|
| 49 | simprr 531 |
. . . . 5
| |
| 50 | ovexg 5990 |
. . . . 5
| |
| 51 | 44, 48, 49, 50 | syl3anc 1250 |
. . . 4
|
| 52 | 27, 33, 36, 41, 43, 51 | seq3clss 10633 |
. . 3
|
| 53 | 20, 52 | eqeltrd 2283 |
. 2
|
| 54 | zdclt 9465 |
. . . 4
| |
| 55 | 6, 5, 54 | syl2anc 411 |
. . 3
|
| 56 | exmiddc 838 |
. . 3
| |
| 57 | 55, 56 | syl 14 |
. 2
|
| 58 | 16, 53, 57 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-frec 6489 df-1o 6514 df-er 6632 df-en 6840 df-fin 6842 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-inn 9052 df-2 9110 df-n0 9311 df-z 9388 df-uz 9664 df-fz 10146 df-fzo 10280 df-seqfrec 10610 df-ndx 12905 df-slot 12906 df-base 12908 df-plusg 12992 df-0g 13160 df-igsum 13161 df-mgm 13258 df-sgrp 13304 df-mnd 13319 |
| This theorem is referenced by: gsumfzmhm2 13750 gsumfzfsumlemm 14419 lgseisenlem3 15619 lgseisenlem4 15620 |
| Copyright terms: Public domain | W3C validator |