ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzcl Unicode version

Theorem gsumfzcl 13401
Description: Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 16-Aug-2025.)
Hypotheses
Ref Expression
gsumcl.b  |-  B  =  ( Base `  G
)
gsumcl.z  |-  .0.  =  ( 0g `  G )
gsumfzcl.g  |-  ( ph  ->  G  e.  Mnd )
gsumfzcl.m  |-  ( ph  ->  M  e.  ZZ )
gsumfzcl.n  |-  ( ph  ->  N  e.  ZZ )
gsumfzcl.f  |-  ( ph  ->  F : ( M ... N ) --> B )
Assertion
Ref Expression
gsumfzcl  |-  ( ph  ->  ( G  gsumg  F )  e.  B
)

Proof of Theorem gsumfzcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumcl.b . . . . . 6  |-  B  =  ( Base `  G
)
2 gsumcl.z . . . . . 6  |-  .0.  =  ( 0g `  G )
3 eqid 2206 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
4 gsumfzcl.g . . . . . 6  |-  ( ph  ->  G  e.  Mnd )
5 gsumfzcl.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
6 gsumfzcl.n . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
7 gsumfzcl.f . . . . . 6  |-  ( ph  ->  F : ( M ... N ) --> B )
81, 2, 3, 4, 5, 6, 7gsumfzval 13293 . . . . 5  |-  ( ph  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
98adantr 276 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) ) )
10 simpr 110 . . . . 5  |-  ( (
ph  /\  N  <  M )  ->  N  <  M )
1110iftrued 3582 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G
) ,  F ) `
 N ) )  =  .0.  )
129, 11eqtrd 2239 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  .0.  )
131, 2mndidcl 13332 . . . . 5  |-  ( G  e.  Mnd  ->  .0.  e.  B )
144, 13syl 14 . . . 4  |-  ( ph  ->  .0.  e.  B )
1514adantr 276 . . 3  |-  ( (
ph  /\  N  <  M )  ->  .0.  e.  B )
1612, 15eqeltrd 2283 . 2  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  e.  B )
178adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
18 simpr 110 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  -.  N  <  M )
1918iffalsed 3585 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  if ( N  <  M ,  .0.  ,  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) )  =  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) )
2017, 19eqtrd 2239 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  (  seq M ( ( +g  `  G ) ,  F ) `  N ) )
215adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  ZZ )
226adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ZZ )
2321zred 9510 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  RR )
2422zred 9510 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  RR )
2523, 24, 18nltled 8208 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  <_  N )
26 eluz2 9669 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
2721, 22, 25, 26syl3anbrc 1184 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ( ZZ>= `  M )
)
285, 6fzfigd 10593 . . . . . . 7  |-  ( ph  ->  ( M ... N
)  e.  Fin )
297, 28fexd 5826 . . . . . 6  |-  ( ph  ->  F  e.  _V )
3029ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( ZZ>= `  M ) )  ->  F  e.  _V )
31 vex 2776 . . . . 5  |-  x  e. 
_V
32 fvexg 5607 . . . . 5  |-  ( ( F  e.  _V  /\  x  e.  _V )  ->  ( F `  x
)  e.  _V )
3330, 31, 32sylancl 413 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( ZZ>= `  M ) )  -> 
( F `  x
)  e.  _V )
347ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  ->  F : ( M ... N ) --> B )
35 simpr 110 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  ->  x  e.  ( M ... N ) )
3634, 35ffvelcdmd 5728 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  -> 
( F `  x
)  e.  B )
374ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  G  e.  Mnd )
38 simprl 529 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  x  e.  B )
39 simprr 531 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  y  e.  B )
401, 3mndcl 13325 . . . . 5  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
4137, 38, 39, 40syl3anc 1250 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) y )  e.  B )
42 ssv 3219 . . . . 5  |-  B  C_  _V
4342a1i 9 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  B  C_ 
_V )
44 simprl 529 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  x  e.  _V )
45 plusgslid 13014 . . . . . . . 8  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4645slotex 12929 . . . . . . 7  |-  ( G  e.  Mnd  ->  ( +g  `  G )  e. 
_V )
474, 46syl 14 . . . . . 6  |-  ( ph  ->  ( +g  `  G
)  e.  _V )
4847ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  ( +g  `  G )  e.  _V )
49 simprr 531 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  y  e.  _V )
50 ovexg 5990 . . . . 5  |-  ( ( x  e.  _V  /\  ( +g  `  G )  e.  _V  /\  y  e.  _V )  ->  (
x ( +g  `  G
) y )  e. 
_V )
5144, 48, 49, 50syl3anc 1250 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  ( x
( +g  `  G ) y )  e.  _V )
5227, 33, 36, 41, 43, 51seq3clss 10633 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  (  seq M ( ( +g  `  G ) ,  F
) `  N )  e.  B )
5320, 52eqeltrd 2283 . 2  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  e.  B
)
54 zdclt 9465 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  -> DECID  N  <  M )
556, 5, 54syl2anc 411 . . 3  |-  ( ph  -> DECID  N  <  M )
56 exmiddc 838 . . 3  |-  (DECID  N  < 
M  ->  ( N  <  M  \/  -.  N  <  M ) )
5755, 56syl 14 . 2  |-  ( ph  ->  ( N  <  M  \/  -.  N  <  M
) )
5816, 53, 57mpjaodan 800 1  |-  ( ph  ->  ( G  gsumg  F )  e.  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2177   _Vcvv 2773    C_ wss 3170   ifcif 3575   class class class wbr 4050   -->wf 5275   ` cfv 5279  (class class class)co 5956   Fincfn 6839    < clt 8122    <_ cle 8123   ZZcz 9387   ZZ>=cuz 9663   ...cfz 10145    seqcseq 10609   Basecbs 12902   +g cplusg 12979   0gc0g 13158    gsumg cgsu 13159   Mndcmnd 13318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-1o 6514  df-er 6632  df-en 6840  df-fin 6842  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-inn 9052  df-2 9110  df-n0 9311  df-z 9388  df-uz 9664  df-fz 10146  df-fzo 10280  df-seqfrec 10610  df-ndx 12905  df-slot 12906  df-base 12908  df-plusg 12992  df-0g 13160  df-igsum 13161  df-mgm 13258  df-sgrp 13304  df-mnd 13319
This theorem is referenced by:  gsumfzmhm2  13750  gsumfzfsumlemm  14419  lgseisenlem3  15619  lgseisenlem4  15620
  Copyright terms: Public domain W3C validator