ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzcl Unicode version

Theorem gsumfzcl 13518
Description: Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 16-Aug-2025.)
Hypotheses
Ref Expression
gsumcl.b  |-  B  =  ( Base `  G
)
gsumcl.z  |-  .0.  =  ( 0g `  G )
gsumfzcl.g  |-  ( ph  ->  G  e.  Mnd )
gsumfzcl.m  |-  ( ph  ->  M  e.  ZZ )
gsumfzcl.n  |-  ( ph  ->  N  e.  ZZ )
gsumfzcl.f  |-  ( ph  ->  F : ( M ... N ) --> B )
Assertion
Ref Expression
gsumfzcl  |-  ( ph  ->  ( G  gsumg  F )  e.  B
)

Proof of Theorem gsumfzcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumcl.b . . . . . 6  |-  B  =  ( Base `  G
)
2 gsumcl.z . . . . . 6  |-  .0.  =  ( 0g `  G )
3 eqid 2229 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
4 gsumfzcl.g . . . . . 6  |-  ( ph  ->  G  e.  Mnd )
5 gsumfzcl.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
6 gsumfzcl.n . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
7 gsumfzcl.f . . . . . 6  |-  ( ph  ->  F : ( M ... N ) --> B )
81, 2, 3, 4, 5, 6, 7gsumfzval 13410 . . . . 5  |-  ( ph  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
98adantr 276 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) ) )
10 simpr 110 . . . . 5  |-  ( (
ph  /\  N  <  M )  ->  N  <  M )
1110iftrued 3609 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G
) ,  F ) `
 N ) )  =  .0.  )
129, 11eqtrd 2262 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  .0.  )
131, 2mndidcl 13449 . . . . 5  |-  ( G  e.  Mnd  ->  .0.  e.  B )
144, 13syl 14 . . . 4  |-  ( ph  ->  .0.  e.  B )
1514adantr 276 . . 3  |-  ( (
ph  /\  N  <  M )  ->  .0.  e.  B )
1612, 15eqeltrd 2306 . 2  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  e.  B )
178adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
18 simpr 110 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  -.  N  <  M )
1918iffalsed 3612 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  if ( N  <  M ,  .0.  ,  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) )  =  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) )
2017, 19eqtrd 2262 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  (  seq M ( ( +g  `  G ) ,  F ) `  N ) )
215adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  ZZ )
226adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ZZ )
2321zred 9557 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  RR )
2422zred 9557 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  RR )
2523, 24, 18nltled 8255 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  <_  N )
26 eluz2 9716 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
2721, 22, 25, 26syl3anbrc 1205 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ( ZZ>= `  M )
)
285, 6fzfigd 10640 . . . . . . 7  |-  ( ph  ->  ( M ... N
)  e.  Fin )
297, 28fexd 5862 . . . . . 6  |-  ( ph  ->  F  e.  _V )
3029ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( ZZ>= `  M ) )  ->  F  e.  _V )
31 vex 2802 . . . . 5  |-  x  e. 
_V
32 fvexg 5642 . . . . 5  |-  ( ( F  e.  _V  /\  x  e.  _V )  ->  ( F `  x
)  e.  _V )
3330, 31, 32sylancl 413 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( ZZ>= `  M ) )  -> 
( F `  x
)  e.  _V )
347ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  ->  F : ( M ... N ) --> B )
35 simpr 110 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  ->  x  e.  ( M ... N ) )
3634, 35ffvelcdmd 5764 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  -> 
( F `  x
)  e.  B )
374ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  G  e.  Mnd )
38 simprl 529 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  x  e.  B )
39 simprr 531 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  y  e.  B )
401, 3mndcl 13442 . . . . 5  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
4137, 38, 39, 40syl3anc 1271 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) y )  e.  B )
42 ssv 3246 . . . . 5  |-  B  C_  _V
4342a1i 9 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  B  C_ 
_V )
44 simprl 529 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  x  e.  _V )
45 plusgslid 13131 . . . . . . . 8  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4645slotex 13045 . . . . . . 7  |-  ( G  e.  Mnd  ->  ( +g  `  G )  e. 
_V )
474, 46syl 14 . . . . . 6  |-  ( ph  ->  ( +g  `  G
)  e.  _V )
4847ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  ( +g  `  G )  e.  _V )
49 simprr 531 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  y  e.  _V )
50 ovexg 6028 . . . . 5  |-  ( ( x  e.  _V  /\  ( +g  `  G )  e.  _V  /\  y  e.  _V )  ->  (
x ( +g  `  G
) y )  e. 
_V )
5144, 48, 49, 50syl3anc 1271 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  ( x
( +g  `  G ) y )  e.  _V )
5227, 33, 36, 41, 43, 51seq3clss 10680 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  (  seq M ( ( +g  `  G ) ,  F
) `  N )  e.  B )
5320, 52eqeltrd 2306 . 2  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  e.  B
)
54 zdclt 9512 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  -> DECID  N  <  M )
556, 5, 54syl2anc 411 . . 3  |-  ( ph  -> DECID  N  <  M )
56 exmiddc 841 . . 3  |-  (DECID  N  < 
M  ->  ( N  <  M  \/  -.  N  <  M ) )
5755, 56syl 14 . 2  |-  ( ph  ->  ( N  <  M  \/  -.  N  <  M
) )
5816, 53, 57mpjaodan 803 1  |-  ( ph  ->  ( G  gsumg  F )  e.  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   ifcif 3602   class class class wbr 4082   -->wf 5310   ` cfv 5314  (class class class)co 5994   Fincfn 6877    < clt 8169    <_ cle 8170   ZZcz 9434   ZZ>=cuz 9710   ...cfz 10192    seqcseq 10656   Basecbs 13018   +g cplusg 13096   0gc0g 13275    gsumg cgsu 13276   Mndcmnd 13435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-1o 6552  df-er 6670  df-en 6878  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-2 9157  df-n0 9358  df-z 9435  df-uz 9711  df-fz 10193  df-fzo 10327  df-seqfrec 10657  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-0g 13277  df-igsum 13278  df-mgm 13375  df-sgrp 13421  df-mnd 13436
This theorem is referenced by:  gsumfzmhm2  13867  gsumfzfsumlemm  14536  lgseisenlem3  15736  lgseisenlem4  15737
  Copyright terms: Public domain W3C validator