ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzmptfidmadd Unicode version

Theorem gsumfzmptfidmadd 13745
Description: The sum of two group sums expressed as mappings with finite domain. (Contributed by AV, 23-Jul-2019.) (Revised by Jim Kingdon, 31-Aug-2025.)
Hypotheses
Ref Expression
gsummptfidmadd.b  |-  B  =  ( Base `  G
)
gsummptfidmadd.p  |-  .+  =  ( +g  `  G )
gsummptfidmadd.g  |-  ( ph  ->  G  e. CMnd )
gsumfzmptfidmadd.m  |-  ( ph  ->  M  e.  ZZ )
gsumfzmptfidmadd.n  |-  ( ph  ->  N  e.  ZZ )
gsumfzmptfidmadd.c  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  C  e.  B )
gsumfzmptfidmadd.d  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  D  e.  B )
gsumfzmptfidmadd.f  |-  F  =  ( x  e.  ( M ... N ) 
|->  C )
gsumfzmptfidmadd.h  |-  H  =  ( x  e.  ( M ... N ) 
|->  D )
Assertion
Ref Expression
gsumfzmptfidmadd  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( M ... N ) 
|->  ( C  .+  D
) ) )  =  ( ( G  gsumg  F ) 
.+  ( G  gsumg  H ) ) )
Distinct variable groups:    x, B    ph, x    x, 
.+    x, M    x, N
Allowed substitution hints:    C( x)    D( x)    F( x)    G( x)    H( x)

Proof of Theorem gsumfzmptfidmadd
Dummy variables  k  p  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  N  <  M )
21iftrued 3582 . . 3  |-  ( (
ph  /\  N  <  M )  ->  if ( N  <  M ,  ( 0g `  G ) ,  (  seq M
(  .+  ,  (
x  e.  ( M ... N )  |->  ( C  .+  D ) ) ) `  N
) )  =  ( 0g `  G ) )
3 gsummptfidmadd.b . . . . 5  |-  B  =  ( Base `  G
)
4 eqid 2206 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
5 gsummptfidmadd.p . . . . 5  |-  .+  =  ( +g  `  G )
6 gsummptfidmadd.g . . . . 5  |-  ( ph  ->  G  e. CMnd )
7 gsumfzmptfidmadd.m . . . . 5  |-  ( ph  ->  M  e.  ZZ )
8 gsumfzmptfidmadd.n . . . . 5  |-  ( ph  ->  N  e.  ZZ )
96cmnmndd 13714 . . . . . . . 8  |-  ( ph  ->  G  e.  Mnd )
109adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  G  e.  Mnd )
11 gsumfzmptfidmadd.c . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  C  e.  B )
12 gsumfzmptfidmadd.d . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  D  e.  B )
133, 5mndcl 13325 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  C  e.  B  /\  D  e.  B )  ->  ( C  .+  D
)  e.  B )
1410, 11, 12, 13syl3anc 1250 . . . . . 6  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( C  .+  D )  e.  B
)
1514fmpttd 5747 . . . . 5  |-  ( ph  ->  ( x  e.  ( M ... N ) 
|->  ( C  .+  D
) ) : ( M ... N ) --> B )
163, 4, 5, 6, 7, 8, 15gsumfzval 13293 . . . 4  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( M ... N ) 
|->  ( C  .+  D
) ) )  =  if ( N  < 
M ,  ( 0g
`  G ) ,  (  seq M ( 
.+  ,  ( x  e.  ( M ... N )  |->  ( C 
.+  D ) ) ) `  N ) ) )
1716adantr 276 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  ( x  e.  ( M ... N )  |->  ( C  .+  D ) ) )  =  if ( N  <  M ,  ( 0g `  G ) ,  (  seq M (  .+  ,  ( x  e.  ( M ... N
)  |->  ( C  .+  D ) ) ) `
 N ) ) )
18 gsumfzmptfidmadd.f . . . . . . . . 9  |-  F  =  ( x  e.  ( M ... N ) 
|->  C )
1911, 18fmptd 5746 . . . . . . . 8  |-  ( ph  ->  F : ( M ... N ) --> B )
203, 4, 5, 6, 7, 8, 19gsumfzval 13293 . . . . . . 7  |-  ( ph  ->  ( G  gsumg  F )  =  if ( N  <  M ,  ( 0g `  G ) ,  (  seq M (  .+  ,  F ) `  N
) ) )
2120adantr 276 . . . . . 6  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M , 
( 0g `  G
) ,  (  seq M (  .+  ,  F ) `  N
) ) )
221iftrued 3582 . . . . . 6  |-  ( (
ph  /\  N  <  M )  ->  if ( N  <  M ,  ( 0g `  G ) ,  (  seq M
(  .+  ,  F
) `  N )
)  =  ( 0g
`  G ) )
2321, 22eqtrd 2239 . . . . 5  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  ( 0g
`  G ) )
24 gsumfzmptfidmadd.h . . . . . . . . 9  |-  H  =  ( x  e.  ( M ... N ) 
|->  D )
2512, 24fmptd 5746 . . . . . . . 8  |-  ( ph  ->  H : ( M ... N ) --> B )
263, 4, 5, 6, 7, 8, 25gsumfzval 13293 . . . . . . 7  |-  ( ph  ->  ( G  gsumg  H )  =  if ( N  <  M ,  ( 0g `  G ) ,  (  seq M (  .+  ,  H ) `  N
) ) )
2726adantr 276 . . . . . 6  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  H )  =  if ( N  <  M , 
( 0g `  G
) ,  (  seq M (  .+  ,  H ) `  N
) ) )
281iftrued 3582 . . . . . 6  |-  ( (
ph  /\  N  <  M )  ->  if ( N  <  M ,  ( 0g `  G ) ,  (  seq M
(  .+  ,  H
) `  N )
)  =  ( 0g
`  G ) )
2927, 28eqtrd 2239 . . . . 5  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  H )  =  ( 0g
`  G ) )
3023, 29oveq12d 5974 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  ( ( G  gsumg  F )  .+  ( G  gsumg  H ) )  =  ( ( 0g `  G )  .+  ( 0g `  G ) ) )
313, 4mndidcl 13332 . . . . . 6  |-  ( G  e.  Mnd  ->  ( 0g `  G )  e.  B )
323, 5, 4mndlid 13337 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( 0g `  G )  e.  B )  -> 
( ( 0g `  G )  .+  ( 0g `  G ) )  =  ( 0g `  G ) )
339, 31, 32syl2anc2 412 . . . . 5  |-  ( ph  ->  ( ( 0g `  G )  .+  ( 0g `  G ) )  =  ( 0g `  G ) )
3433adantr 276 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  ( ( 0g `  G )  .+  ( 0g `  G ) )  =  ( 0g
`  G ) )
3530, 34eqtrd 2239 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( ( G  gsumg  F )  .+  ( G  gsumg  H ) )  =  ( 0g `  G
) )
362, 17, 353eqtr4d 2249 . 2  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  ( x  e.  ( M ... N )  |->  ( C  .+  D ) ) )  =  ( ( G  gsumg  F )  .+  ( G  gsumg  H ) ) )
379ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( p  e.  B  /\  q  e.  B
) )  ->  G  e.  Mnd )
38 simprl 529 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( p  e.  B  /\  q  e.  B
) )  ->  p  e.  B )
39 simprr 531 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( p  e.  B  /\  q  e.  B
) )  ->  q  e.  B )
403, 5mndcl 13325 . . . . 5  |-  ( ( G  e.  Mnd  /\  p  e.  B  /\  q  e.  B )  ->  ( p  .+  q
)  e.  B )
4137, 38, 39, 40syl3anc 1250 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( p  e.  B  /\  q  e.  B
) )  ->  (
p  .+  q )  e.  B )
426ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( p  e.  B  /\  q  e.  B
) )  ->  G  e. CMnd )
433, 5cmncom 13708 . . . . 5  |-  ( ( G  e. CMnd  /\  p  e.  B  /\  q  e.  B )  ->  (
p  .+  q )  =  ( q  .+  p ) )
4442, 38, 39, 43syl3anc 1250 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( p  e.  B  /\  q  e.  B
) )  ->  (
p  .+  q )  =  ( q  .+  p ) )
459ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( p  e.  B  /\  q  e.  B  /\  r  e.  B
) )  ->  G  e.  Mnd )
463, 5mndass 13326 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( p  e.  B  /\  q  e.  B  /\  r  e.  B
) )  ->  (
( p  .+  q
)  .+  r )  =  ( p  .+  ( q  .+  r
) ) )
4745, 46sylancom 420 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( p  e.  B  /\  q  e.  B  /\  r  e.  B
) )  ->  (
( p  .+  q
)  .+  r )  =  ( p  .+  ( q  .+  r
) ) )
487adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  ZZ )
498adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ZZ )
5048zred 9510 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  RR )
5149zred 9510 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  RR )
52 simpr 110 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  -.  N  <  M )
5350, 51, 52nltled 8208 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  <_  N )
54 eluz2 9669 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
5548, 49, 53, 54syl3anbrc 1184 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ( ZZ>= `  M )
)
5619adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  F : ( M ... N ) --> B )
5756ffvelcdmda 5727 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  k  e.  ( M ... N ) )  -> 
( F `  k
)  e.  B )
5825adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  H : ( M ... N ) --> B )
5958ffvelcdmda 5727 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  k  e.  ( M ... N ) )  -> 
( H `  k
)  e.  B )
607, 8fzfigd 10593 . . . . . . . 8  |-  ( ph  ->  ( M ... N
)  e.  Fin )
6118a1i 9 . . . . . . . 8  |-  ( ph  ->  F  =  ( x  e.  ( M ... N )  |->  C ) )
6224a1i 9 . . . . . . . 8  |-  ( ph  ->  H  =  ( x  e.  ( M ... N )  |->  D ) )
6360, 11, 12, 61, 62offval2 6186 . . . . . . 7  |-  ( ph  ->  ( F  oF  .+  H )  =  ( x  e.  ( M ... N ) 
|->  ( C  .+  D
) ) )
6463fveq1d 5590 . . . . . 6  |-  ( ph  ->  ( ( F  oF  .+  H ) `  k )  =  ( ( x  e.  ( M ... N ) 
|->  ( C  .+  D
) ) `  k
) )
6564ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  k  e.  ( M ... N ) )  -> 
( ( F  oF  .+  H ) `  k )  =  ( ( x  e.  ( M ... N ) 
|->  ( C  .+  D
) ) `  k
) )
6619ffnd 5435 . . . . . . 7  |-  ( ph  ->  F  Fn  ( M ... N ) )
6725ffnd 5435 . . . . . . 7  |-  ( ph  ->  H  Fn  ( M ... N ) )
68 inidm 3386 . . . . . . 7  |-  ( ( M ... N )  i^i  ( M ... N ) )  =  ( M ... N
)
69 eqidd 2207 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =  ( F `  k ) )
70 eqidd 2207 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( H `  k ) )
719adantr 276 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  G  e.  Mnd )
7219ffvelcdmda 5727 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  B
)
7325ffvelcdmda 5727 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  e.  B
)
743, 5mndcl 13325 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( F `  k )  e.  B  /\  ( H `  k )  e.  B )  ->  (
( F `  k
)  .+  ( H `  k ) )  e.  B )
7571, 72, 73, 74syl3anc 1250 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( ( F `  k )  .+  ( H `  k
) )  e.  B
)
7666, 67, 60, 60, 68, 69, 70, 75ofvalg 6180 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( ( F  oF  .+  H
) `  k )  =  ( ( F `
 k )  .+  ( H `  k ) ) )
7776adantlr 477 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  k  e.  ( M ... N ) )  -> 
( ( F  oF  .+  H ) `  k )  =  ( ( F `  k
)  .+  ( H `  k ) ) )
7865, 77eqtr3d 2241 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  k  e.  ( M ... N ) )  -> 
( ( x  e.  ( M ... N
)  |->  ( C  .+  D ) ) `  k )  =  ( ( F `  k
)  .+  ( H `  k ) ) )
79 plusgslid 13014 . . . . . . . 8  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
8079slotex 12929 . . . . . . 7  |-  ( G  e. CMnd  ->  ( +g  `  G
)  e.  _V )
816, 80syl 14 . . . . . 6  |-  ( ph  ->  ( +g  `  G
)  e.  _V )
825, 81eqeltrid 2293 . . . . 5  |-  ( ph  ->  .+  e.  _V )
8382adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  .+  e.  _V )
8419, 60fexd 5826 . . . . 5  |-  ( ph  ->  F  e.  _V )
8584adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  F  e.  _V )
8625, 60fexd 5826 . . . . 5  |-  ( ph  ->  H  e.  _V )
8786adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  H  e.  _V )
8815, 60fexd 5826 . . . . 5  |-  ( ph  ->  ( x  e.  ( M ... N ) 
|->  ( C  .+  D
) )  e.  _V )
8988adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  (
x  e.  ( M ... N )  |->  ( C  .+  D ) )  e.  _V )
9041, 44, 47, 55, 57, 59, 78, 83, 85, 87, 89seqcaoprg 10658 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  (  seq M (  .+  , 
( x  e.  ( M ... N ) 
|->  ( C  .+  D
) ) ) `  N )  =  ( (  seq M ( 
.+  ,  F ) `
 N )  .+  (  seq M (  .+  ,  H ) `  N
) ) )
9116adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  ( x  e.  ( M ... N ) 
|->  ( C  .+  D
) ) )  =  if ( N  < 
M ,  ( 0g
`  G ) ,  (  seq M ( 
.+  ,  ( x  e.  ( M ... N )  |->  ( C 
.+  D ) ) ) `  N ) ) )
9252iffalsed 3585 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  if ( N  <  M , 
( 0g `  G
) ,  (  seq M (  .+  , 
( x  e.  ( M ... N ) 
|->  ( C  .+  D
) ) ) `  N ) )  =  (  seq M ( 
.+  ,  ( x  e.  ( M ... N )  |->  ( C 
.+  D ) ) ) `  N ) )
9391, 92eqtrd 2239 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  ( x  e.  ( M ... N ) 
|->  ( C  .+  D
) ) )  =  (  seq M ( 
.+  ,  ( x  e.  ( M ... N )  |->  ( C 
.+  D ) ) ) `  N ) )
9420adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M ,  ( 0g `  G ) ,  (  seq M (  .+  ,  F ) `  N
) ) )
9552iffalsed 3585 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  if ( N  <  M , 
( 0g `  G
) ,  (  seq M (  .+  ,  F ) `  N
) )  =  (  seq M (  .+  ,  F ) `  N
) )
9694, 95eqtrd 2239 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  N
) )
9726adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  H )  =  if ( N  <  M ,  ( 0g `  G ) ,  (  seq M (  .+  ,  H ) `  N
) ) )
9852iffalsed 3585 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  if ( N  <  M , 
( 0g `  G
) ,  (  seq M (  .+  ,  H ) `  N
) )  =  (  seq M (  .+  ,  H ) `  N
) )
9997, 98eqtrd 2239 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  H )  =  (  seq M (  .+  ,  H ) `  N
) )
10096, 99oveq12d 5974 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  (
( G  gsumg  F )  .+  ( G  gsumg  H ) )  =  ( (  seq M
(  .+  ,  F
) `  N )  .+  (  seq M ( 
.+  ,  H ) `
 N ) ) )
10190, 93, 1003eqtr4d 2249 . 2  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  ( x  e.  ( M ... N ) 
|->  ( C  .+  D
) ) )  =  ( ( G  gsumg  F ) 
.+  ( G  gsumg  H ) ) )
102 zdclt 9465 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  -> DECID  N  <  M )
1038, 7, 102syl2anc 411 . . 3  |-  ( ph  -> DECID  N  <  M )
104 exmiddc 838 . . 3  |-  (DECID  N  < 
M  ->  ( N  <  M  \/  -.  N  <  M ) )
105103, 104syl 14 . 2  |-  ( ph  ->  ( N  <  M  \/  -.  N  <  M
) )
10636, 101, 105mpjaodan 800 1  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( M ... N ) 
|->  ( C  .+  D
) ) )  =  ( ( G  gsumg  F ) 
.+  ( G  gsumg  H ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2177   _Vcvv 2773   ifcif 3575   class class class wbr 4050    |-> cmpt 4112   -->wf 5275   ` cfv 5279  (class class class)co 5956    oFcof 6168   Fincfn 6839    < clt 8122    <_ cle 8123   ZZcz 9387   ZZ>=cuz 9663   ...cfz 10145    seqcseq 10609   Basecbs 12902   +g cplusg 12979   0gc0g 13158    gsumg cgsu 13159   Mndcmnd 13318  CMndccmn 13690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-of 6170  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-1o 6514  df-er 6632  df-en 6840  df-fin 6842  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-inn 9052  df-2 9110  df-n0 9311  df-z 9388  df-uz 9664  df-fz 10146  df-fzo 10280  df-seqfrec 10610  df-ndx 12905  df-slot 12906  df-base 12908  df-plusg 12992  df-0g 13160  df-igsum 13161  df-mgm 13258  df-sgrp 13304  df-mnd 13319  df-cmn 13692
This theorem is referenced by:  gsumfzmptfidmadd2  13746
  Copyright terms: Public domain W3C validator