ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqf1oglem2a Unicode version

Theorem seqf1oglem2a 10579
Description: Lemma for seqf1og 10582. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
seqf1o.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seqf1o.2  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
seqf1o.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
seqf1o.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqf1o.5  |-  ( ph  ->  C  C_  S )
seqf1og.p  |-  ( ph  ->  .+  e.  V )
seqf1olem2a.1  |-  ( ph  ->  G : A --> C )
seqf1olem2a.3  |-  ( ph  ->  K  e.  A )
seqf1olem2a.4  |-  ( ph  ->  ( M ... N
)  C_  A )
seqf1oglem2a.a  |-  ( ph  ->  A  e.  W )
Assertion
Ref Expression
seqf1oglem2a  |-  ( ph  ->  ( ( G `  K )  .+  (  seq M (  .+  ,  G ) `  N
) )  =  ( (  seq M ( 
.+  ,  G ) `
 N )  .+  ( G `  K ) ) )
Distinct variable groups:    x, y, z, G    x, M, y, z    x,  .+ , y, z   
x, N, y, z   
x, K, y, z    ph, x, y, z    x, S, y, z    x, C, y, z
Allowed substitution hints:    A( x, y, z)    V( x, y, z)    W( x, y, z)

Proof of Theorem seqf1oglem2a
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqf1o.4 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10088 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 5546 . . . . . 6  |-  ( m  =  M  ->  (  seq M (  .+  ,  G ) `  m
)  =  (  seq M (  .+  ,  G ) `  M
) )
54oveq2d 5926 . . . . 5  |-  ( m  =  M  ->  (
( G `  K
)  .+  (  seq M (  .+  ,  G ) `  m
) )  =  ( ( G `  K
)  .+  (  seq M (  .+  ,  G ) `  M
) ) )
64oveq1d 5925 . . . . 5  |-  ( m  =  M  ->  (
(  seq M (  .+  ,  G ) `  m
)  .+  ( G `  K ) )  =  ( (  seq M
(  .+  ,  G
) `  M )  .+  ( G `  K
) ) )
75, 6eqeq12d 2208 . . . 4  |-  ( m  =  M  ->  (
( ( G `  K )  .+  (  seq M (  .+  ,  G ) `  m
) )  =  ( (  seq M ( 
.+  ,  G ) `
 m )  .+  ( G `  K ) )  <->  ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  M
) )  =  ( (  seq M ( 
.+  ,  G ) `
 M )  .+  ( G `  K ) ) ) )
87imbi2d 230 . . 3  |-  ( m  =  M  ->  (
( ph  ->  ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  m )
)  =  ( (  seq M (  .+  ,  G ) `  m
)  .+  ( G `  K ) ) )  <-> 
( ph  ->  ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  M )
)  =  ( (  seq M (  .+  ,  G ) `  M
)  .+  ( G `  K ) ) ) ) )
9 fveq2 5546 . . . . . 6  |-  ( m  =  n  ->  (  seq M (  .+  ,  G ) `  m
)  =  (  seq M (  .+  ,  G ) `  n
) )
109oveq2d 5926 . . . . 5  |-  ( m  =  n  ->  (
( G `  K
)  .+  (  seq M (  .+  ,  G ) `  m
) )  =  ( ( G `  K
)  .+  (  seq M (  .+  ,  G ) `  n
) ) )
119oveq1d 5925 . . . . 5  |-  ( m  =  n  ->  (
(  seq M (  .+  ,  G ) `  m
)  .+  ( G `  K ) )  =  ( (  seq M
(  .+  ,  G
) `  n )  .+  ( G `  K
) ) )
1210, 11eqeq12d 2208 . . . 4  |-  ( m  =  n  ->  (
( ( G `  K )  .+  (  seq M (  .+  ,  G ) `  m
) )  =  ( (  seq M ( 
.+  ,  G ) `
 m )  .+  ( G `  K ) )  <->  ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  n
) )  =  ( (  seq M ( 
.+  ,  G ) `
 n )  .+  ( G `  K ) ) ) )
1312imbi2d 230 . . 3  |-  ( m  =  n  ->  (
( ph  ->  ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  m )
)  =  ( (  seq M (  .+  ,  G ) `  m
)  .+  ( G `  K ) ) )  <-> 
( ph  ->  ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  n )
)  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  K ) ) ) ) )
14 fveq2 5546 . . . . . 6  |-  ( m  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  G ) `  m
)  =  (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )
1514oveq2d 5926 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (
( G `  K
)  .+  (  seq M (  .+  ,  G ) `  m
) )  =  ( ( G `  K
)  .+  (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) ) )
1614oveq1d 5925 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (
(  seq M (  .+  ,  G ) `  m
)  .+  ( G `  K ) )  =  ( (  seq M
(  .+  ,  G
) `  ( n  +  1 ) ) 
.+  ( G `  K ) ) )
1715, 16eqeq12d 2208 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (
( ( G `  K )  .+  (  seq M (  .+  ,  G ) `  m
) )  =  ( (  seq M ( 
.+  ,  G ) `
 m )  .+  ( G `  K ) )  <->  ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )  =  ( (  seq M ( 
.+  ,  G ) `
 ( n  + 
1 ) )  .+  ( G `  K ) ) ) )
1817imbi2d 230 . . 3  |-  ( m  =  ( n  + 
1 )  ->  (
( ph  ->  ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  m )
)  =  ( (  seq M (  .+  ,  G ) `  m
)  .+  ( G `  K ) ) )  <-> 
( ph  ->  ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  ( n  +  1 ) ) )  =  ( (  seq M (  .+  ,  G ) `  (
n  +  1 ) )  .+  ( G `
 K ) ) ) ) )
19 fveq2 5546 . . . . . 6  |-  ( m  =  N  ->  (  seq M (  .+  ,  G ) `  m
)  =  (  seq M (  .+  ,  G ) `  N
) )
2019oveq2d 5926 . . . . 5  |-  ( m  =  N  ->  (
( G `  K
)  .+  (  seq M (  .+  ,  G ) `  m
) )  =  ( ( G `  K
)  .+  (  seq M (  .+  ,  G ) `  N
) ) )
2119oveq1d 5925 . . . . 5  |-  ( m  =  N  ->  (
(  seq M (  .+  ,  G ) `  m
)  .+  ( G `  K ) )  =  ( (  seq M
(  .+  ,  G
) `  N )  .+  ( G `  K
) ) )
2220, 21eqeq12d 2208 . . . 4  |-  ( m  =  N  ->  (
( ( G `  K )  .+  (  seq M (  .+  ,  G ) `  m
) )  =  ( (  seq M ( 
.+  ,  G ) `
 m )  .+  ( G `  K ) )  <->  ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  N
) )  =  ( (  seq M ( 
.+  ,  G ) `
 N )  .+  ( G `  K ) ) ) )
2322imbi2d 230 . . 3  |-  ( m  =  N  ->  (
( ph  ->  ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  m )
)  =  ( (  seq M (  .+  ,  G ) `  m
)  .+  ( G `  K ) ) )  <-> 
( ph  ->  ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  N )
)  =  ( (  seq M (  .+  ,  G ) `  N
)  .+  ( G `  K ) ) ) ) )
24 seqf1o.2 . . . . 5  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
25 seqf1olem2a.1 . . . . . 6  |-  ( ph  ->  G : A --> C )
26 seqf1olem2a.3 . . . . . 6  |-  ( ph  ->  K  e.  A )
2725, 26ffvelcdmd 5686 . . . . 5  |-  ( ph  ->  ( G `  K
)  e.  C )
28 eluzel2 9587 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
291, 28syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
30 seqf1oglem2a.a . . . . . . . 8  |-  ( ph  ->  A  e.  W )
3125, 30fexd 5780 . . . . . . 7  |-  ( ph  ->  G  e.  _V )
32 seqf1og.p . . . . . . 7  |-  ( ph  ->  .+  e.  V )
33 seq1g 10524 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  G  e.  _V  /\  .+  e.  V )  ->  (  seq M (  .+  ,  G ) `  M
)  =  ( G `
 M ) )
3429, 31, 32, 33syl3anc 1249 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  G ) `
 M )  =  ( G `  M
) )
35 seqf1olem2a.4 . . . . . . . 8  |-  ( ph  ->  ( M ... N
)  C_  A )
36 eluzfz1 10087 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
371, 36syl 14 . . . . . . . 8  |-  ( ph  ->  M  e.  ( M ... N ) )
3835, 37sseldd 3180 . . . . . . 7  |-  ( ph  ->  M  e.  A )
3925, 38ffvelcdmd 5686 . . . . . 6  |-  ( ph  ->  ( G `  M
)  e.  C )
4034, 39eqeltrd 2270 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  G ) `
 M )  e.  C )
4124, 27, 40caovcomd 6067 . . . 4  |-  ( ph  ->  ( ( G `  K )  .+  (  seq M (  .+  ,  G ) `  M
) )  =  ( (  seq M ( 
.+  ,  G ) `
 M )  .+  ( G `  K ) ) )
4241a1i 9 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( G `  K )  .+  (  seq M (  .+  ,  G ) `  M
) )  =  ( (  seq M ( 
.+  ,  G ) `
 M )  .+  ( G `  K ) ) ) )
43 oveq1 5917 . . . . . 6  |-  ( ( ( G `  K
)  .+  (  seq M (  .+  ,  G ) `  n
) )  =  ( (  seq M ( 
.+  ,  G ) `
 n )  .+  ( G `  K ) )  ->  ( (
( G `  K
)  .+  (  seq M (  .+  ,  G ) `  n
) )  .+  ( G `  ( n  +  1 ) ) )  =  ( ( (  seq M ( 
.+  ,  G ) `
 n )  .+  ( G `  K ) )  .+  ( G `
 ( n  + 
1 ) ) ) )
44 elfzouz 10207 . . . . . . . . . . 11  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( ZZ>= `  M )
)
4544adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  n  e.  (
ZZ>= `  M ) )
4631adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  G  e.  _V )
4732adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  .+  e.  V
)
48 seqp1g 10527 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  M )  /\  G  e.  _V  /\  .+  e.  V )  ->  (  seq M (  .+  ,  G ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) )
4945, 46, 47, 48syl3anc 1249 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  .+  ,  G
) `  ( n  +  1 ) )  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) )
5049oveq2d 5926 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )  =  ( ( G `  K
)  .+  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) ) )
51 seqf1o.3 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
5251adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
53 seqf1o.5 . . . . . . . . . . 11  |-  ( ph  ->  C  C_  S )
5453, 27sseldd 3180 . . . . . . . . . 10  |-  ( ph  ->  ( G `  K
)  e.  S )
5554adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( G `  K )  e.  S
)
5653adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  C  C_  S
)
5756adantr 276 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( M ... n
) )  ->  C  C_  S )
5825adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  G : A --> C )
5958adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( M ... n
) )  ->  G : A --> C )
60 elfzouz2 10218 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( M..^ N
)  ->  N  e.  ( ZZ>= `  n )
)
6160adantl 277 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  N  e.  (
ZZ>= `  n ) )
62 fzss2 10120 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  n
)  ->  ( M ... n )  C_  ( M ... N ) )
6361, 62syl 14 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( M ... n )  C_  ( M ... N ) )
6435adantr 276 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( M ... N )  C_  A
)
6563, 64sstrd 3189 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( M ... n )  C_  A
)
6665sselda 3179 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( M ... n
) )  ->  x  e.  A )
6759, 66ffvelcdmd 5686 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( M ... n
) )  ->  ( G `  x )  e.  C )
6857, 67sseldd 3180 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( M ... n
) )  ->  ( G `  x )  e.  S )
69 seqf1o.1 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
7069adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
7145, 68, 70, 46, 47seqclg 10533 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  .+  ,  G
) `  n )  e.  S )
72 fzofzp1 10284 . . . . . . . . . . . . 13  |-  ( n  e.  ( M..^ N
)  ->  ( n  +  1 )  e.  ( M ... N
) )
7372adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( n  + 
1 )  e.  ( M ... N ) )
7464, 73sseldd 3180 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( n  + 
1 )  e.  A
)
7558, 74ffvelcdmd 5686 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( G `  ( n  +  1
) )  e.  C
)
7656, 75sseldd 3180 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( G `  ( n  +  1
) )  e.  S
)
7752, 55, 71, 76caovassd 6070 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  n )
)  .+  ( G `  ( n  +  1 ) ) )  =  ( ( G `  K )  .+  (
(  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) ) )
7850, 77eqtr4d 2229 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )  =  ( ( ( G `  K )  .+  (  seq M (  .+  ,  G ) `  n
) )  .+  ( G `  ( n  +  1 ) ) ) )
7952, 71, 76, 55caovassd 6070 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) )  .+  ( G `  K ) )  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( ( G `  ( n  +  1 ) ) 
.+  ( G `  K ) ) ) )
8049oveq1d 5925 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  G ) `  (
n  +  1 ) )  .+  ( G `
 K ) )  =  ( ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) )  .+  ( G `  K ) ) )
8152, 71, 55, 76caovassd 6070 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  K ) )  .+  ( G `  ( n  +  1 ) ) )  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( ( G `  K )  .+  ( G `  (
n  +  1 ) ) ) ) )
8224adantlr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
8327adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( G `  K )  e.  C
)
8482, 75, 83caovcomd 6067 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( G `
 ( n  + 
1 ) )  .+  ( G `  K ) )  =  ( ( G `  K ) 
.+  ( G `  ( n  +  1
) ) ) )
8584oveq2d 5926 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( ( G `  ( n  +  1 ) ) 
.+  ( G `  K ) ) )  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( ( G `  K )  .+  ( G `  (
n  +  1 ) ) ) ) )
8681, 85eqtr4d 2229 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  K ) )  .+  ( G `  ( n  +  1 ) ) )  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( ( G `  ( n  +  1 ) ) 
.+  ( G `  K ) ) ) )
8779, 80, 863eqtr4d 2236 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  G ) `  (
n  +  1 ) )  .+  ( G `
 K ) )  =  ( ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  K ) )  .+  ( G `  ( n  +  1 ) ) ) )
8878, 87eqeq12d 2208 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  ( n  +  1 ) ) )  =  ( (  seq M (  .+  ,  G ) `  (
n  +  1 ) )  .+  ( G `
 K ) )  <-> 
( ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  n
) )  .+  ( G `  ( n  +  1 ) ) )  =  ( ( (  seq M ( 
.+  ,  G ) `
 n )  .+  ( G `  K ) )  .+  ( G `
 ( n  + 
1 ) ) ) ) )
8943, 88imbitrrid 156 . . . . 5  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( ( G `  K ) 
.+  (  seq M
(  .+  ,  G
) `  n )
)  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  K ) )  -> 
( ( G `  K )  .+  (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )  =  ( (  seq M ( 
.+  ,  G ) `
 ( n  + 
1 ) )  .+  ( G `  K ) ) ) )
9089expcom 116 . . . 4  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  n
) )  =  ( (  seq M ( 
.+  ,  G ) `
 n )  .+  ( G `  K ) )  ->  ( ( G `  K )  .+  (  seq M ( 
.+  ,  G ) `
 ( n  + 
1 ) ) )  =  ( (  seq M (  .+  ,  G ) `  (
n  +  1 ) )  .+  ( G `
 K ) ) ) ) )
9190a2d 26 . . 3  |-  ( n  e.  ( M..^ N
)  ->  ( ( ph  ->  ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  n
) )  =  ( (  seq M ( 
.+  ,  G ) `
 n )  .+  ( G `  K ) ) )  ->  ( ph  ->  ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )  =  ( (  seq M ( 
.+  ,  G ) `
 ( n  + 
1 ) )  .+  ( G `  K ) ) ) ) )
928, 13, 18, 23, 42, 91fzind2 10296 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  ( ( G `
 K )  .+  (  seq M (  .+  ,  G ) `  N
) )  =  ( (  seq M ( 
.+  ,  G ) `
 N )  .+  ( G `  K ) ) ) )
933, 92mpcom 36 1  |-  ( ph  ->  ( ( G `  K )  .+  (  seq M (  .+  ,  G ) `  N
) )  =  ( (  seq M ( 
.+  ,  G ) `
 N )  .+  ( G `  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   _Vcvv 2760    C_ wss 3153   -->wf 5242   ` cfv 5246  (class class class)co 5910   1c1 7863    + caddc 7865   ZZcz 9307   ZZ>=cuz 9582   ...cfz 10064  ..^cfzo 10198    seqcseq 10508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-iinf 4616  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-addcom 7962  ax-addass 7964  ax-distr 7966  ax-i2m1 7967  ax-0lt1 7968  ax-0id 7970  ax-rnegex 7971  ax-cnre 7973  ax-pre-ltirr 7974  ax-pre-ltwlin 7975  ax-pre-lttrn 7976  ax-pre-ltadd 7978
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4322  df-iord 4395  df-on 4397  df-ilim 4398  df-suc 4400  df-iom 4619  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-riota 5865  df-ov 5913  df-oprab 5914  df-mpo 5915  df-1st 6184  df-2nd 6185  df-recs 6349  df-frec 6435  df-pnf 8046  df-mnf 8047  df-xr 8048  df-ltxr 8049  df-le 8050  df-sub 8182  df-neg 8183  df-inn 8973  df-n0 9231  df-z 9308  df-uz 9583  df-fz 10065  df-fzo 10199  df-seqfrec 10509
This theorem is referenced by:  seqf1oglem2  10581
  Copyright terms: Public domain W3C validator