ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumprval Unicode version

Theorem gsumprval 13427
Description: Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018.)
Hypotheses
Ref Expression
gsumprval.b  |-  B  =  ( Base `  G
)
gsumprval.p  |-  .+  =  ( +g  `  G )
gsumprval.g  |-  ( ph  ->  G  e.  V )
gsumprval.m  |-  ( ph  ->  M  e.  ZZ )
gsumprval.n  |-  ( ph  ->  N  =  ( M  +  1 ) )
gsumprval.f  |-  ( ph  ->  F : { M ,  N } --> B )
Assertion
Ref Expression
gsumprval  |-  ( ph  ->  ( G  gsumg  F )  =  ( ( F `  M
)  .+  ( F `  N ) ) )

Proof of Theorem gsumprval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumprval.b . . 3  |-  B  =  ( Base `  G
)
2 gsumprval.p . . 3  |-  .+  =  ( +g  `  G )
3 gsumprval.g . . 3  |-  ( ph  ->  G  e.  V )
4 gsumprval.m . . . . 5  |-  ( ph  ->  M  e.  ZZ )
54uzidd 9733 . . . 4  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
6 peano2uz 9774 . . . 4  |-  ( M  e.  ( ZZ>= `  M
)  ->  ( M  +  1 )  e.  ( ZZ>= `  M )
)
75, 6syl 14 . . 3  |-  ( ph  ->  ( M  +  1 )  e.  ( ZZ>= `  M ) )
8 gsumprval.f . . . 4  |-  ( ph  ->  F : { M ,  N } --> B )
9 fzpr 10269 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M ... ( M  + 
1 ) )  =  { M ,  ( M  +  1 ) } )
104, 9syl 14 . . . . . 6  |-  ( ph  ->  ( M ... ( M  +  1 ) )  =  { M ,  ( M  + 
1 ) } )
11 gsumprval.n . . . . . . . 8  |-  ( ph  ->  N  =  ( M  +  1 ) )
1211eqcomd 2235 . . . . . . 7  |-  ( ph  ->  ( M  +  1 )  =  N )
1312preq2d 3750 . . . . . 6  |-  ( ph  ->  { M ,  ( M  +  1 ) }  =  { M ,  N } )
1410, 13eqtrd 2262 . . . . 5  |-  ( ph  ->  ( M ... ( M  +  1 ) )  =  { M ,  N } )
1514feq2d 5460 . . . 4  |-  ( ph  ->  ( F : ( M ... ( M  +  1 ) ) --> B  <->  F : { M ,  N } --> B ) )
168, 15mpbird 167 . . 3  |-  ( ph  ->  F : ( M ... ( M  + 
1 ) ) --> B )
171, 2, 3, 7, 16gsumval2 13425 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  ( M  +  1 ) ) )
184peano2zd 9568 . . . . . . . 8  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
1911, 18eqeltrd 2306 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
20 prexg 4294 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  { M ,  N }  e.  _V )
214, 19, 20syl2anc 411 . . . . . 6  |-  ( ph  ->  { M ,  N }  e.  _V )
228, 21fexd 5868 . . . . 5  |-  ( ph  ->  F  e.  _V )
23 vex 2802 . . . . 5  |-  x  e. 
_V
24 fvexg 5645 . . . . 5  |-  ( ( F  e.  _V  /\  x  e.  _V )  ->  ( F `  x
)  e.  _V )
2522, 23, 24sylancl 413 . . . 4  |-  ( ph  ->  ( F `  x
)  e.  _V )
2625adantr 276 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  _V )
27 plusgslid 13140 . . . . . . . 8  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
2827slotex 13054 . . . . . . 7  |-  ( G  e.  V  ->  ( +g  `  G )  e. 
_V )
293, 28syl 14 . . . . . 6  |-  ( ph  ->  ( +g  `  G
)  e.  _V )
302, 29eqeltrid 2316 . . . . 5  |-  ( ph  ->  .+  e.  _V )
31 vex 2802 . . . . . 6  |-  y  e. 
_V
3231a1i 9 . . . . 5  |-  ( ph  ->  y  e.  _V )
33 ovexg 6034 . . . . 5  |-  ( ( x  e.  _V  /\  .+  e.  _V  /\  y  e.  _V )  ->  (
x  .+  y )  e.  _V )
3423, 30, 32, 33mp3an2i 1376 . . . 4  |-  ( ph  ->  ( x  .+  y
)  e.  _V )
3534adantr 276 . . 3  |-  ( (
ph  /\  ( x  e.  _V  /\  y  e. 
_V ) )  -> 
( x  .+  y
)  e.  _V )
365, 26, 35seq3p1 10682 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( M  + 
1 ) )  =  ( (  seq M
(  .+  ,  F
) `  M )  .+  ( F `  ( M  +  1 ) ) ) )
374, 26, 35seq3-1 10679 . . 3  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
3812fveq2d 5630 . . 3  |-  ( ph  ->  ( F `  ( M  +  1 ) )  =  ( F `
 N ) )
3937, 38oveq12d 6018 . 2  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  M )  .+  ( F `  ( M  +  1 ) ) )  =  ( ( F `  M
)  .+  ( F `  N ) ) )
4017, 36, 393eqtrd 2266 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( ( F `  M
)  .+  ( F `  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799   {cpr 3667   -->wf 5313   ` cfv 5317  (class class class)co 6000   1c1 7996    + caddc 7998   ZZcz 9442   ZZ>=cuz 9718   ...cfz 10200    seqcseq 10664   Basecbs 13027   +g cplusg 13105    gsumg cgsu 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-igsum 13287
This theorem is referenced by:  gsumpr12val  13428
  Copyright terms: Public domain W3C validator