ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumprval Unicode version

Theorem gsumprval 13316
Description: Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018.)
Hypotheses
Ref Expression
gsumprval.b  |-  B  =  ( Base `  G
)
gsumprval.p  |-  .+  =  ( +g  `  G )
gsumprval.g  |-  ( ph  ->  G  e.  V )
gsumprval.m  |-  ( ph  ->  M  e.  ZZ )
gsumprval.n  |-  ( ph  ->  N  =  ( M  +  1 ) )
gsumprval.f  |-  ( ph  ->  F : { M ,  N } --> B )
Assertion
Ref Expression
gsumprval  |-  ( ph  ->  ( G  gsumg  F )  =  ( ( F `  M
)  .+  ( F `  N ) ) )

Proof of Theorem gsumprval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumprval.b . . 3  |-  B  =  ( Base `  G
)
2 gsumprval.p . . 3  |-  .+  =  ( +g  `  G )
3 gsumprval.g . . 3  |-  ( ph  ->  G  e.  V )
4 gsumprval.m . . . . 5  |-  ( ph  ->  M  e.  ZZ )
54uzidd 9693 . . . 4  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
6 peano2uz 9734 . . . 4  |-  ( M  e.  ( ZZ>= `  M
)  ->  ( M  +  1 )  e.  ( ZZ>= `  M )
)
75, 6syl 14 . . 3  |-  ( ph  ->  ( M  +  1 )  e.  ( ZZ>= `  M ) )
8 gsumprval.f . . . 4  |-  ( ph  ->  F : { M ,  N } --> B )
9 fzpr 10229 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M ... ( M  + 
1 ) )  =  { M ,  ( M  +  1 ) } )
104, 9syl 14 . . . . . 6  |-  ( ph  ->  ( M ... ( M  +  1 ) )  =  { M ,  ( M  + 
1 ) } )
11 gsumprval.n . . . . . . . 8  |-  ( ph  ->  N  =  ( M  +  1 ) )
1211eqcomd 2212 . . . . . . 7  |-  ( ph  ->  ( M  +  1 )  =  N )
1312preq2d 3722 . . . . . 6  |-  ( ph  ->  { M ,  ( M  +  1 ) }  =  { M ,  N } )
1410, 13eqtrd 2239 . . . . 5  |-  ( ph  ->  ( M ... ( M  +  1 ) )  =  { M ,  N } )
1514feq2d 5428 . . . 4  |-  ( ph  ->  ( F : ( M ... ( M  +  1 ) ) --> B  <->  F : { M ,  N } --> B ) )
168, 15mpbird 167 . . 3  |-  ( ph  ->  F : ( M ... ( M  + 
1 ) ) --> B )
171, 2, 3, 7, 16gsumval2 13314 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  ( M  +  1 ) ) )
184peano2zd 9528 . . . . . . . 8  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
1911, 18eqeltrd 2283 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
20 prexg 4266 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  { M ,  N }  e.  _V )
214, 19, 20syl2anc 411 . . . . . 6  |-  ( ph  ->  { M ,  N }  e.  _V )
228, 21fexd 5832 . . . . 5  |-  ( ph  ->  F  e.  _V )
23 vex 2776 . . . . 5  |-  x  e. 
_V
24 fvexg 5613 . . . . 5  |-  ( ( F  e.  _V  /\  x  e.  _V )  ->  ( F `  x
)  e.  _V )
2522, 23, 24sylancl 413 . . . 4  |-  ( ph  ->  ( F `  x
)  e.  _V )
2625adantr 276 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  _V )
27 plusgslid 13029 . . . . . . . 8  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
2827slotex 12944 . . . . . . 7  |-  ( G  e.  V  ->  ( +g  `  G )  e. 
_V )
293, 28syl 14 . . . . . 6  |-  ( ph  ->  ( +g  `  G
)  e.  _V )
302, 29eqeltrid 2293 . . . . 5  |-  ( ph  ->  .+  e.  _V )
31 vex 2776 . . . . . 6  |-  y  e. 
_V
3231a1i 9 . . . . 5  |-  ( ph  ->  y  e.  _V )
33 ovexg 5996 . . . . 5  |-  ( ( x  e.  _V  /\  .+  e.  _V  /\  y  e.  _V )  ->  (
x  .+  y )  e.  _V )
3423, 30, 32, 33mp3an2i 1355 . . . 4  |-  ( ph  ->  ( x  .+  y
)  e.  _V )
3534adantr 276 . . 3  |-  ( (
ph  /\  ( x  e.  _V  /\  y  e. 
_V ) )  -> 
( x  .+  y
)  e.  _V )
365, 26, 35seq3p1 10642 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 ( M  + 
1 ) )  =  ( (  seq M
(  .+  ,  F
) `  M )  .+  ( F `  ( M  +  1 ) ) ) )
374, 26, 35seq3-1 10639 . . 3  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
3812fveq2d 5598 . . 3  |-  ( ph  ->  ( F `  ( M  +  1 ) )  =  ( F `
 N ) )
3937, 38oveq12d 5980 . 2  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  M )  .+  ( F `  ( M  +  1 ) ) )  =  ( ( F `  M
)  .+  ( F `  N ) ) )
4017, 36, 393eqtrd 2243 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( ( F `  M
)  .+  ( F `  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   _Vcvv 2773   {cpr 3639   -->wf 5281   ` cfv 5285  (class class class)co 5962   1c1 7956    + caddc 7958   ZZcz 9402   ZZ>=cuz 9678   ...cfz 10160    seqcseq 10624   Basecbs 12917   +g cplusg 12994    gsumg cgsu 13174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-1o 6520  df-er 6638  df-en 6846  df-fin 6848  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-inn 9067  df-2 9125  df-n0 9326  df-z 9403  df-uz 9679  df-fz 10161  df-seqfrec 10625  df-ndx 12920  df-slot 12921  df-base 12923  df-plusg 13007  df-0g 13175  df-igsum 13176
This theorem is referenced by:  gsumpr12val  13317
  Copyright terms: Public domain W3C validator