ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzsubmcl Unicode version

Theorem gsumfzsubmcl 13397
Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 30-Aug-2025.)
Hypotheses
Ref Expression
gsumfzsubmcl.g  |-  ( ph  ->  G  e.  Mnd )
gsumfzsubmcl.m  |-  ( ph  ->  M  e.  ZZ )
gsumfzsubmcl.n  |-  ( ph  ->  N  e.  ZZ )
gsumsubmcl.s  |-  ( ph  ->  S  e.  (SubMnd `  G ) )
gsumfzsubmcl.f  |-  ( ph  ->  F : ( M ... N ) --> S )
Assertion
Ref Expression
gsumfzsubmcl  |-  ( ph  ->  ( G  gsumg  F )  e.  S
)

Proof of Theorem gsumfzsubmcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2193 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 eqid 2193 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
4 gsumfzsubmcl.g . . . . . 6  |-  ( ph  ->  G  e.  Mnd )
5 gsumfzsubmcl.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
6 gsumfzsubmcl.n . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
7 gsumfzsubmcl.f . . . . . . 7  |-  ( ph  ->  F : ( M ... N ) --> S )
8 gsumsubmcl.s . . . . . . . 8  |-  ( ph  ->  S  e.  (SubMnd `  G ) )
91submss 13038 . . . . . . . 8  |-  ( S  e.  (SubMnd `  G
)  ->  S  C_  ( Base `  G ) )
108, 9syl 14 . . . . . . 7  |-  ( ph  ->  S  C_  ( Base `  G ) )
117, 10fssd 5408 . . . . . 6  |-  ( ph  ->  F : ( M ... N ) --> (
Base `  G )
)
121, 2, 3, 4, 5, 6, 11gsumfzval 12964 . . . . 5  |-  ( ph  ->  ( G  gsumg  F )  =  if ( N  <  M ,  ( 0g `  G ) ,  (  seq M ( ( +g  `  G ) ,  F ) `  N ) ) )
1312adantr 276 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M , 
( 0g `  G
) ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
14 simpr 110 . . . . 5  |-  ( (
ph  /\  N  <  M )  ->  N  <  M )
1514iftrued 3564 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  if ( N  <  M ,  ( 0g `  G ) ,  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) )  =  ( 0g `  G ) )
1613, 15eqtrd 2226 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  ( 0g
`  G ) )
172subm0cl 13040 . . . . 5  |-  ( S  e.  (SubMnd `  G
)  ->  ( 0g `  G )  e.  S
)
188, 17syl 14 . . . 4  |-  ( ph  ->  ( 0g `  G
)  e.  S )
1918adantr 276 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( 0g `  G )  e.  S
)
2016, 19eqeltrd 2270 . 2  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  e.  S )
2112adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M ,  ( 0g `  G ) ,  (  seq M ( ( +g  `  G ) ,  F ) `  N ) ) )
22 simpr 110 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  -.  N  <  M )
2322iffalsed 3567 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  if ( N  <  M , 
( 0g `  G
) ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
)  =  (  seq M ( ( +g  `  G ) ,  F
) `  N )
)
2421, 23eqtrd 2226 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  (  seq M ( ( +g  `  G ) ,  F ) `  N ) )
255adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  ZZ )
266adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ZZ )
2725zred 9429 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  RR )
2826zred 9429 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  RR )
2927, 28, 22nltled 8130 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  <_  N )
30 eluz2 9588 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
3125, 26, 29, 30syl3anbrc 1183 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ( ZZ>= `  M )
)
327adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  F : ( M ... N ) --> S )
3332ffvelcdmda 5685 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  -> 
( F `  x
)  e.  S )
348ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  S  e.  (SubMnd `  G )
)
35 simprl 529 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  x  e.  S )
36 simprr 531 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  y  e.  S )
373submcl 13041 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  x  e.  S  /\  y  e.  S )  ->  (
x ( +g  `  G
) y )  e.  S )
3834, 35, 36, 37syl3anc 1249 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  (
x ( +g  `  G
) y )  e.  S )
395, 6fzfigd 10492 . . . . . 6  |-  ( ph  ->  ( M ... N
)  e.  Fin )
4039adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  ( M ... N )  e. 
Fin )
4132, 40fexd 5780 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  F  e.  _V )
42 plusgslid 12720 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4342slotex 12635 . . . . . 6  |-  ( G  e.  Mnd  ->  ( +g  `  G )  e. 
_V )
444, 43syl 14 . . . . 5  |-  ( ph  ->  ( +g  `  G
)  e.  _V )
4544adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( +g  `  G )  e. 
_V )
4631, 33, 38, 41, 45seqclg 10533 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  (  seq M ( ( +g  `  G ) ,  F
) `  N )  e.  S )
4724, 46eqeltrd 2270 . 2  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  e.  S
)
48 zdclt 9384 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  -> DECID  N  <  M )
496, 5, 48syl2anc 411 . . 3  |-  ( ph  -> DECID  N  <  M )
50 exmiddc 837 . . 3  |-  (DECID  N  < 
M  ->  ( N  <  M  \/  -.  N  <  M ) )
5149, 50syl 14 . 2  |-  ( ph  ->  ( N  <  M  \/  -.  N  <  M
) )
5220, 47, 51mpjaodan 799 1  |-  ( ph  ->  ( G  gsumg  F )  e.  S
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2164   _Vcvv 2760    C_ wss 3153   ifcif 3557   class class class wbr 4029   -->wf 5242   ` cfv 5246  (class class class)co 5910   Fincfn 6785    < clt 8044    <_ cle 8045   ZZcz 9307   ZZ>=cuz 9582   ...cfz 10064    seqcseq 10508   Basecbs 12608   +g cplusg 12685   0gc0g 12857    gsumg cgsu 12858   Mndcmnd 12987  SubMndcsubmnd 13020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-iinf 4616  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-addcom 7962  ax-addass 7964  ax-distr 7966  ax-i2m1 7967  ax-0lt1 7968  ax-0id 7970  ax-rnegex 7971  ax-cnre 7973  ax-pre-ltirr 7974  ax-pre-ltwlin 7975  ax-pre-lttrn 7976  ax-pre-apti 7977  ax-pre-ltadd 7978
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4322  df-iord 4395  df-on 4397  df-ilim 4398  df-suc 4400  df-iom 4619  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-riota 5865  df-ov 5913  df-oprab 5914  df-mpo 5915  df-1st 6184  df-2nd 6185  df-recs 6349  df-frec 6435  df-1o 6460  df-er 6578  df-en 6786  df-fin 6788  df-pnf 8046  df-mnf 8047  df-xr 8048  df-ltxr 8049  df-le 8050  df-sub 8182  df-neg 8183  df-inn 8973  df-2 9031  df-n0 9231  df-z 9308  df-uz 9583  df-fz 10065  df-fzo 10199  df-seqfrec 10509  df-ndx 12611  df-slot 12612  df-base 12614  df-plusg 12698  df-0g 12859  df-igsum 12860  df-submnd 13022
This theorem is referenced by:  lgseisenlem3  15136
  Copyright terms: Public domain W3C validator