ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzsubmcl Unicode version

Theorem gsumfzsubmcl 13744
Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 30-Aug-2025.)
Hypotheses
Ref Expression
gsumfzsubmcl.g  |-  ( ph  ->  G  e.  Mnd )
gsumfzsubmcl.m  |-  ( ph  ->  M  e.  ZZ )
gsumfzsubmcl.n  |-  ( ph  ->  N  e.  ZZ )
gsumsubmcl.s  |-  ( ph  ->  S  e.  (SubMnd `  G ) )
gsumfzsubmcl.f  |-  ( ph  ->  F : ( M ... N ) --> S )
Assertion
Ref Expression
gsumfzsubmcl  |-  ( ph  ->  ( G  gsumg  F )  e.  S
)

Proof of Theorem gsumfzsubmcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2206 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 eqid 2206 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
4 gsumfzsubmcl.g . . . . . 6  |-  ( ph  ->  G  e.  Mnd )
5 gsumfzsubmcl.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
6 gsumfzsubmcl.n . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
7 gsumfzsubmcl.f . . . . . . 7  |-  ( ph  ->  F : ( M ... N ) --> S )
8 gsumsubmcl.s . . . . . . . 8  |-  ( ph  ->  S  e.  (SubMnd `  G ) )
91submss 13378 . . . . . . . 8  |-  ( S  e.  (SubMnd `  G
)  ->  S  C_  ( Base `  G ) )
108, 9syl 14 . . . . . . 7  |-  ( ph  ->  S  C_  ( Base `  G ) )
117, 10fssd 5447 . . . . . 6  |-  ( ph  ->  F : ( M ... N ) --> (
Base `  G )
)
121, 2, 3, 4, 5, 6, 11gsumfzval 13293 . . . . 5  |-  ( ph  ->  ( G  gsumg  F )  =  if ( N  <  M ,  ( 0g `  G ) ,  (  seq M ( ( +g  `  G ) ,  F ) `  N ) ) )
1312adantr 276 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M , 
( 0g `  G
) ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
14 simpr 110 . . . . 5  |-  ( (
ph  /\  N  <  M )  ->  N  <  M )
1514iftrued 3582 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  if ( N  <  M ,  ( 0g `  G ) ,  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) )  =  ( 0g `  G ) )
1613, 15eqtrd 2239 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  ( 0g
`  G ) )
172subm0cl 13380 . . . . 5  |-  ( S  e.  (SubMnd `  G
)  ->  ( 0g `  G )  e.  S
)
188, 17syl 14 . . . 4  |-  ( ph  ->  ( 0g `  G
)  e.  S )
1918adantr 276 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( 0g `  G )  e.  S
)
2016, 19eqeltrd 2283 . 2  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  e.  S )
2112adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M ,  ( 0g `  G ) ,  (  seq M ( ( +g  `  G ) ,  F ) `  N ) ) )
22 simpr 110 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  -.  N  <  M )
2322iffalsed 3585 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  if ( N  <  M , 
( 0g `  G
) ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
)  =  (  seq M ( ( +g  `  G ) ,  F
) `  N )
)
2421, 23eqtrd 2239 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  (  seq M ( ( +g  `  G ) ,  F ) `  N ) )
255adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  ZZ )
266adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ZZ )
2725zred 9510 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  RR )
2826zred 9510 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  RR )
2927, 28, 22nltled 8208 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  <_  N )
30 eluz2 9669 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
3125, 26, 29, 30syl3anbrc 1184 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ( ZZ>= `  M )
)
327adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  F : ( M ... N ) --> S )
3332ffvelcdmda 5727 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  -> 
( F `  x
)  e.  S )
348ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  S  e.  (SubMnd `  G )
)
35 simprl 529 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  x  e.  S )
36 simprr 531 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  y  e.  S )
373submcl 13381 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  x  e.  S  /\  y  e.  S )  ->  (
x ( +g  `  G
) y )  e.  S )
3834, 35, 36, 37syl3anc 1250 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  (
x ( +g  `  G
) y )  e.  S )
395, 6fzfigd 10593 . . . . . 6  |-  ( ph  ->  ( M ... N
)  e.  Fin )
4039adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  ( M ... N )  e. 
Fin )
4132, 40fexd 5826 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  F  e.  _V )
42 plusgslid 13014 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4342slotex 12929 . . . . . 6  |-  ( G  e.  Mnd  ->  ( +g  `  G )  e. 
_V )
444, 43syl 14 . . . . 5  |-  ( ph  ->  ( +g  `  G
)  e.  _V )
4544adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( +g  `  G )  e. 
_V )
4631, 33, 38, 41, 45seqclg 10634 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  (  seq M ( ( +g  `  G ) ,  F
) `  N )  e.  S )
4724, 46eqeltrd 2283 . 2  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  e.  S
)
48 zdclt 9465 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  -> DECID  N  <  M )
496, 5, 48syl2anc 411 . . 3  |-  ( ph  -> DECID  N  <  M )
50 exmiddc 838 . . 3  |-  (DECID  N  < 
M  ->  ( N  <  M  \/  -.  N  <  M ) )
5149, 50syl 14 . 2  |-  ( ph  ->  ( N  <  M  \/  -.  N  <  M
) )
5220, 47, 51mpjaodan 800 1  |-  ( ph  ->  ( G  gsumg  F )  e.  S
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2177   _Vcvv 2773    C_ wss 3170   ifcif 3575   class class class wbr 4050   -->wf 5275   ` cfv 5279  (class class class)co 5956   Fincfn 6839    < clt 8122    <_ cle 8123   ZZcz 9387   ZZ>=cuz 9663   ...cfz 10145    seqcseq 10609   Basecbs 12902   +g cplusg 12979   0gc0g 13158    gsumg cgsu 13159   Mndcmnd 13318  SubMndcsubmnd 13360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-1o 6514  df-er 6632  df-en 6840  df-fin 6842  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-inn 9052  df-2 9110  df-n0 9311  df-z 9388  df-uz 9664  df-fz 10146  df-fzo 10280  df-seqfrec 10610  df-ndx 12905  df-slot 12906  df-base 12908  df-plusg 12992  df-0g 13160  df-igsum 13161  df-submnd 13362
This theorem is referenced by:  lgseisenlem3  15619
  Copyright terms: Public domain W3C validator