ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzsubmcl Unicode version

Theorem gsumfzsubmcl 13883
Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 30-Aug-2025.)
Hypotheses
Ref Expression
gsumfzsubmcl.g  |-  ( ph  ->  G  e.  Mnd )
gsumfzsubmcl.m  |-  ( ph  ->  M  e.  ZZ )
gsumfzsubmcl.n  |-  ( ph  ->  N  e.  ZZ )
gsumsubmcl.s  |-  ( ph  ->  S  e.  (SubMnd `  G ) )
gsumfzsubmcl.f  |-  ( ph  ->  F : ( M ... N ) --> S )
Assertion
Ref Expression
gsumfzsubmcl  |-  ( ph  ->  ( G  gsumg  F )  e.  S
)

Proof of Theorem gsumfzsubmcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2229 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 eqid 2229 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
4 gsumfzsubmcl.g . . . . . 6  |-  ( ph  ->  G  e.  Mnd )
5 gsumfzsubmcl.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
6 gsumfzsubmcl.n . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
7 gsumfzsubmcl.f . . . . . . 7  |-  ( ph  ->  F : ( M ... N ) --> S )
8 gsumsubmcl.s . . . . . . . 8  |-  ( ph  ->  S  e.  (SubMnd `  G ) )
91submss 13517 . . . . . . . 8  |-  ( S  e.  (SubMnd `  G
)  ->  S  C_  ( Base `  G ) )
108, 9syl 14 . . . . . . 7  |-  ( ph  ->  S  C_  ( Base `  G ) )
117, 10fssd 5486 . . . . . 6  |-  ( ph  ->  F : ( M ... N ) --> (
Base `  G )
)
121, 2, 3, 4, 5, 6, 11gsumfzval 13432 . . . . 5  |-  ( ph  ->  ( G  gsumg  F )  =  if ( N  <  M ,  ( 0g `  G ) ,  (  seq M ( ( +g  `  G ) ,  F ) `  N ) ) )
1312adantr 276 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M , 
( 0g `  G
) ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
14 simpr 110 . . . . 5  |-  ( (
ph  /\  N  <  M )  ->  N  <  M )
1514iftrued 3609 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  if ( N  <  M ,  ( 0g `  G ) ,  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) )  =  ( 0g `  G ) )
1613, 15eqtrd 2262 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  ( 0g
`  G ) )
172subm0cl 13519 . . . . 5  |-  ( S  e.  (SubMnd `  G
)  ->  ( 0g `  G )  e.  S
)
188, 17syl 14 . . . 4  |-  ( ph  ->  ( 0g `  G
)  e.  S )
1918adantr 276 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( 0g `  G )  e.  S
)
2016, 19eqeltrd 2306 . 2  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  e.  S )
2112adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M ,  ( 0g `  G ) ,  (  seq M ( ( +g  `  G ) ,  F ) `  N ) ) )
22 simpr 110 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  -.  N  <  M )
2322iffalsed 3612 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  if ( N  <  M , 
( 0g `  G
) ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
)  =  (  seq M ( ( +g  `  G ) ,  F
) `  N )
)
2421, 23eqtrd 2262 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  (  seq M ( ( +g  `  G ) ,  F ) `  N ) )
255adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  ZZ )
266adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ZZ )
2725zred 9577 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  RR )
2826zred 9577 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  RR )
2927, 28, 22nltled 8275 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  <_  N )
30 eluz2 9736 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
3125, 26, 29, 30syl3anbrc 1205 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ( ZZ>= `  M )
)
327adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  F : ( M ... N ) --> S )
3332ffvelcdmda 5772 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  -> 
( F `  x
)  e.  S )
348ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  S  e.  (SubMnd `  G )
)
35 simprl 529 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  x  e.  S )
36 simprr 531 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  y  e.  S )
373submcl 13520 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  x  e.  S  /\  y  e.  S )  ->  (
x ( +g  `  G
) y )  e.  S )
3834, 35, 36, 37syl3anc 1271 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  (
x ( +g  `  G
) y )  e.  S )
395, 6fzfigd 10661 . . . . . 6  |-  ( ph  ->  ( M ... N
)  e.  Fin )
4039adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  ( M ... N )  e. 
Fin )
4132, 40fexd 5873 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  F  e.  _V )
42 plusgslid 13153 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4342slotex 13067 . . . . . 6  |-  ( G  e.  Mnd  ->  ( +g  `  G )  e. 
_V )
444, 43syl 14 . . . . 5  |-  ( ph  ->  ( +g  `  G
)  e.  _V )
4544adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( +g  `  G )  e. 
_V )
4631, 33, 38, 41, 45seqclg 10702 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  (  seq M ( ( +g  `  G ) ,  F
) `  N )  e.  S )
4724, 46eqeltrd 2306 . 2  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  e.  S
)
48 zdclt 9532 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  -> DECID  N  <  M )
496, 5, 48syl2anc 411 . . 3  |-  ( ph  -> DECID  N  <  M )
50 exmiddc 841 . . 3  |-  (DECID  N  < 
M  ->  ( N  <  M  \/  -.  N  <  M ) )
5149, 50syl 14 . 2  |-  ( ph  ->  ( N  <  M  \/  -.  N  <  M
) )
5220, 47, 51mpjaodan 803 1  |-  ( ph  ->  ( G  gsumg  F )  e.  S
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   ifcif 3602   class class class wbr 4083   -->wf 5314   ` cfv 5318  (class class class)co 6007   Fincfn 6895    < clt 8189    <_ cle 8190   ZZcz 9454   ZZ>=cuz 9730   ...cfz 10212    seqcseq 10677   Basecbs 13040   +g cplusg 13118   0gc0g 13297    gsumg cgsu 13298   Mndcmnd 13457  SubMndcsubmnd 13499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-er 6688  df-en 6896  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-2 9177  df-n0 9378  df-z 9455  df-uz 9731  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-0g 13299  df-igsum 13300  df-submnd 13501
This theorem is referenced by:  lgseisenlem3  15759
  Copyright terms: Public domain W3C validator