ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzsubmcl Unicode version

Theorem gsumfzsubmcl 13444
Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 30-Aug-2025.)
Hypotheses
Ref Expression
gsumfzsubmcl.g  |-  ( ph  ->  G  e.  Mnd )
gsumfzsubmcl.m  |-  ( ph  ->  M  e.  ZZ )
gsumfzsubmcl.n  |-  ( ph  ->  N  e.  ZZ )
gsumsubmcl.s  |-  ( ph  ->  S  e.  (SubMnd `  G ) )
gsumfzsubmcl.f  |-  ( ph  ->  F : ( M ... N ) --> S )
Assertion
Ref Expression
gsumfzsubmcl  |-  ( ph  ->  ( G  gsumg  F )  e.  S
)

Proof of Theorem gsumfzsubmcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2196 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 eqid 2196 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
4 gsumfzsubmcl.g . . . . . 6  |-  ( ph  ->  G  e.  Mnd )
5 gsumfzsubmcl.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
6 gsumfzsubmcl.n . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
7 gsumfzsubmcl.f . . . . . . 7  |-  ( ph  ->  F : ( M ... N ) --> S )
8 gsumsubmcl.s . . . . . . . 8  |-  ( ph  ->  S  e.  (SubMnd `  G ) )
91submss 13084 . . . . . . . 8  |-  ( S  e.  (SubMnd `  G
)  ->  S  C_  ( Base `  G ) )
108, 9syl 14 . . . . . . 7  |-  ( ph  ->  S  C_  ( Base `  G ) )
117, 10fssd 5420 . . . . . 6  |-  ( ph  ->  F : ( M ... N ) --> (
Base `  G )
)
121, 2, 3, 4, 5, 6, 11gsumfzval 13010 . . . . 5  |-  ( ph  ->  ( G  gsumg  F )  =  if ( N  <  M ,  ( 0g `  G ) ,  (  seq M ( ( +g  `  G ) ,  F ) `  N ) ) )
1312adantr 276 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M , 
( 0g `  G
) ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
) )
14 simpr 110 . . . . 5  |-  ( (
ph  /\  N  <  M )  ->  N  <  M )
1514iftrued 3568 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  if ( N  <  M ,  ( 0g `  G ) ,  (  seq M
( ( +g  `  G
) ,  F ) `
 N ) )  =  ( 0g `  G ) )
1613, 15eqtrd 2229 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  =  ( 0g
`  G ) )
172subm0cl 13086 . . . . 5  |-  ( S  e.  (SubMnd `  G
)  ->  ( 0g `  G )  e.  S
)
188, 17syl 14 . . . 4  |-  ( ph  ->  ( 0g `  G
)  e.  S )
1918adantr 276 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( 0g `  G )  e.  S
)
2016, 19eqeltrd 2273 . 2  |-  ( (
ph  /\  N  <  M )  ->  ( G  gsumg  F )  e.  S )
2112adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  if ( N  <  M ,  ( 0g `  G ) ,  (  seq M ( ( +g  `  G ) ,  F ) `  N ) ) )
22 simpr 110 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  -.  N  <  M )
2322iffalsed 3571 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  if ( N  <  M , 
( 0g `  G
) ,  (  seq M ( ( +g  `  G ) ,  F
) `  N )
)  =  (  seq M ( ( +g  `  G ) ,  F
) `  N )
)
2421, 23eqtrd 2229 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  =  (  seq M ( ( +g  `  G ) ,  F ) `  N ) )
255adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  ZZ )
266adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ZZ )
2725zred 9445 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  M  e.  RR )
2826zred 9445 . . . . . 6  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  RR )
2927, 28, 22nltled 8145 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  M  <_  N )
30 eluz2 9604 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
3125, 26, 29, 30syl3anbrc 1183 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  N  e.  ( ZZ>= `  M )
)
327adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  F : ( M ... N ) --> S )
3332ffvelcdmda 5697 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  x  e.  ( M ... N ) )  -> 
( F `  x
)  e.  S )
348ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  S  e.  (SubMnd `  G )
)
35 simprl 529 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  x  e.  S )
36 simprr 531 . . . . 5  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  y  e.  S )
373submcl 13087 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  x  e.  S  /\  y  e.  S )  ->  (
x ( +g  `  G
) y )  e.  S )
3834, 35, 36, 37syl3anc 1249 . . . 4  |-  ( ( ( ph  /\  -.  N  <  M )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  (
x ( +g  `  G
) y )  e.  S )
395, 6fzfigd 10508 . . . . . 6  |-  ( ph  ->  ( M ... N
)  e.  Fin )
4039adantr 276 . . . . 5  |-  ( (
ph  /\  -.  N  <  M )  ->  ( M ... N )  e. 
Fin )
4132, 40fexd 5792 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  F  e.  _V )
42 plusgslid 12766 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4342slotex 12681 . . . . . 6  |-  ( G  e.  Mnd  ->  ( +g  `  G )  e. 
_V )
444, 43syl 14 . . . . 5  |-  ( ph  ->  ( +g  `  G
)  e.  _V )
4544adantr 276 . . . 4  |-  ( (
ph  /\  -.  N  <  M )  ->  ( +g  `  G )  e. 
_V )
4631, 33, 38, 41, 45seqclg 10549 . . 3  |-  ( (
ph  /\  -.  N  <  M )  ->  (  seq M ( ( +g  `  G ) ,  F
) `  N )  e.  S )
4724, 46eqeltrd 2273 . 2  |-  ( (
ph  /\  -.  N  <  M )  ->  ( G  gsumg  F )  e.  S
)
48 zdclt 9400 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  -> DECID  N  <  M )
496, 5, 48syl2anc 411 . . 3  |-  ( ph  -> DECID  N  <  M )
50 exmiddc 837 . . 3  |-  (DECID  N  < 
M  ->  ( N  <  M  \/  -.  N  <  M ) )
5149, 50syl 14 . 2  |-  ( ph  ->  ( N  <  M  \/  -.  N  <  M
) )
5220, 47, 51mpjaodan 799 1  |-  ( ph  ->  ( G  gsumg  F )  e.  S
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157   ifcif 3561   class class class wbr 4033   -->wf 5254   ` cfv 5258  (class class class)co 5922   Fincfn 6799    < clt 8059    <_ cle 8060   ZZcz 9323   ZZ>=cuz 9598   ...cfz 10080    seqcseq 10524   Basecbs 12654   +g cplusg 12731   0gc0g 12903    gsumg cgsu 12904   Mndcmnd 13033  SubMndcsubmnd 13066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-addcom 7977  ax-addass 7979  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-0id 7985  ax-rnegex 7986  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-en 6800  df-fin 6802  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-inn 8988  df-2 9046  df-n0 9247  df-z 9324  df-uz 9599  df-fz 10081  df-fzo 10215  df-seqfrec 10525  df-ndx 12657  df-slot 12658  df-base 12660  df-plusg 12744  df-0g 12905  df-igsum 12906  df-submnd 13068
This theorem is referenced by:  lgseisenlem3  15280
  Copyright terms: Public domain W3C validator