ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqf1og Unicode version

Theorem seqf1og 10730
Description: Rearrange a sum via an arbitrary bijection on  ( M ... N
). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon, 29-Aug-2025.)
Hypotheses
Ref Expression
seqf1o.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seqf1o.2  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
seqf1o.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
seqf1o.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqf1o.5  |-  ( ph  ->  C  C_  S )
seqf1og.p  |-  ( ph  ->  .+  e.  V )
seqf1o.6  |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )
seqf1o.7  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( G `  x )  e.  C
)
seqf1o.8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( G `  ( F `
 k ) ) )
seqf1og.g  |-  ( ph  ->  G  e.  W )
seqf1og.h  |-  ( ph  ->  H  e.  X )
Assertion
Ref Expression
seqf1og  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  (  seq M ( 
.+  ,  G ) `
 N ) )
Distinct variable groups:    x, k, y, z, F    k, G, x, y, z    k, M, x, y, z    .+ , k, x, y, z    k, N, x, y, z    ph, k, x, y, z    S, k, x, y, z    C, k, x, y, z    k, H
Allowed substitution hints:    H( x, y, z)    V( x, y, z, k)    W( x, y, z, k)    X( x, y, z, k)

Proof of Theorem seqf1og
Dummy variables  f  g  s  t  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqf1o.6 . . 3  |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )
2 seqf1o.7 . . . 4  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( G `  x )  e.  C
)
32fmpttd 5783 . . 3  |-  ( ph  ->  ( x  e.  ( M ... N ) 
|->  ( G `  x
) ) : ( M ... N ) --> C )
4 seqf1o.4 . . . . 5  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 oveq2 6002 . . . . . . . . . . 11  |-  ( x  =  M  ->  ( M ... x )  =  ( M ... M
) )
6 f1oeq23 5559 . . . . . . . . . . 11  |-  ( ( ( M ... x
)  =  ( M ... M )  /\  ( M ... x )  =  ( M ... M ) )  -> 
( f : ( M ... x ) -1-1-onto-> ( M ... x )  <-> 
f : ( M ... M ) -1-1-onto-> ( M ... M ) ) )
75, 5, 6syl2anc 411 . . . . . . . . . 10  |-  ( x  =  M  ->  (
f : ( M ... x ) -1-1-onto-> ( M ... x )  <->  f :
( M ... M
)
-1-1-onto-> ( M ... M ) ) )
85feq2d 5457 . . . . . . . . . 10  |-  ( x  =  M  ->  (
g : ( M ... x ) --> C  <-> 
g : ( M ... M ) --> C ) )
97, 8anbi12d 473 . . . . . . . . 9  |-  ( x  =  M  ->  (
( f : ( M ... x ) -1-1-onto-> ( M ... x )  /\  g : ( M ... x ) --> C )  <->  ( f : ( M ... M ) -1-1-onto-> ( M ... M
)  /\  g :
( M ... M
) --> C ) ) )
10 fveq2 5623 . . . . . . . . . 10  |-  ( x  =  M  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  x
)  =  (  seq M (  .+  , 
( g  o.  f
) ) `  M
) )
11 fveq2 5623 . . . . . . . . . 10  |-  ( x  =  M  ->  (  seq M (  .+  , 
g ) `  x
)  =  (  seq M (  .+  , 
g ) `  M
) )
1210, 11eqeq12d 2244 . . . . . . . . 9  |-  ( x  =  M  ->  (
(  seq M (  .+  ,  ( g  o.  f ) ) `  x )  =  (  seq M (  .+  ,  g ) `  x )  <->  (  seq M (  .+  , 
( g  o.  f
) ) `  M
)  =  (  seq M (  .+  , 
g ) `  M
) ) )
139, 12imbi12d 234 . . . . . . . 8  |-  ( x  =  M  ->  (
( ( f : ( M ... x
)
-1-1-onto-> ( M ... x )  /\  g : ( M ... x ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  x
)  =  (  seq M (  .+  , 
g ) `  x
) )  <->  ( (
f : ( M ... M ) -1-1-onto-> ( M ... M )  /\  g : ( M ... M ) --> C )  ->  (  seq M
(  .+  ,  (
g  o.  f ) ) `  M )  =  (  seq M
(  .+  ,  g
) `  M )
) ) )
14132albidv 1913 . . . . . . 7  |-  ( x  =  M  ->  ( A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x )  /\  g : ( M ... x ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  x
)  =  (  seq M (  .+  , 
g ) `  x
) )  <->  A. g A. f ( ( f : ( M ... M ) -1-1-onto-> ( M ... M
)  /\  g :
( M ... M
) --> C )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  M )  =  (  seq M (  .+  ,  g ) `  M ) ) ) )
1514imbi2d 230 . . . . . 6  |-  ( x  =  M  ->  (
( ph  ->  A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x
)  /\  g :
( M ... x
) --> C )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  x )  =  (  seq M (  .+  ,  g ) `  x ) ) )  <-> 
( ph  ->  A. g A. f ( ( f : ( M ... M ) -1-1-onto-> ( M ... M
)  /\  g :
( M ... M
) --> C )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  M )  =  (  seq M (  .+  ,  g ) `  M ) ) ) ) )
16 oveq2 6002 . . . . . . . . . . 11  |-  ( x  =  k  ->  ( M ... x )  =  ( M ... k
) )
17 f1oeq23 5559 . . . . . . . . . . 11  |-  ( ( ( M ... x
)  =  ( M ... k )  /\  ( M ... x )  =  ( M ... k ) )  -> 
( f : ( M ... x ) -1-1-onto-> ( M ... x )  <-> 
f : ( M ... k ) -1-1-onto-> ( M ... k ) ) )
1816, 16, 17syl2anc 411 . . . . . . . . . 10  |-  ( x  =  k  ->  (
f : ( M ... x ) -1-1-onto-> ( M ... x )  <->  f :
( M ... k
)
-1-1-onto-> ( M ... k ) ) )
1916feq2d 5457 . . . . . . . . . 10  |-  ( x  =  k  ->  (
g : ( M ... x ) --> C  <-> 
g : ( M ... k ) --> C ) )
2018, 19anbi12d 473 . . . . . . . . 9  |-  ( x  =  k  ->  (
( f : ( M ... x ) -1-1-onto-> ( M ... x )  /\  g : ( M ... x ) --> C )  <->  ( f : ( M ... k ) -1-1-onto-> ( M ... k
)  /\  g :
( M ... k
) --> C ) ) )
21 fveq2 5623 . . . . . . . . . 10  |-  ( x  =  k  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  x
)  =  (  seq M (  .+  , 
( g  o.  f
) ) `  k
) )
22 fveq2 5623 . . . . . . . . . 10  |-  ( x  =  k  ->  (  seq M (  .+  , 
g ) `  x
)  =  (  seq M (  .+  , 
g ) `  k
) )
2321, 22eqeq12d 2244 . . . . . . . . 9  |-  ( x  =  k  ->  (
(  seq M (  .+  ,  ( g  o.  f ) ) `  x )  =  (  seq M (  .+  ,  g ) `  x )  <->  (  seq M (  .+  , 
( g  o.  f
) ) `  k
)  =  (  seq M (  .+  , 
g ) `  k
) ) )
2420, 23imbi12d 234 . . . . . . . 8  |-  ( x  =  k  ->  (
( ( f : ( M ... x
)
-1-1-onto-> ( M ... x )  /\  g : ( M ... x ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  x
)  =  (  seq M (  .+  , 
g ) `  x
) )  <->  ( (
f : ( M ... k ) -1-1-onto-> ( M ... k )  /\  g : ( M ... k ) --> C )  ->  (  seq M
(  .+  ,  (
g  o.  f ) ) `  k )  =  (  seq M
(  .+  ,  g
) `  k )
) ) )
25242albidv 1913 . . . . . . 7  |-  ( x  =  k  ->  ( A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x )  /\  g : ( M ... x ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  x
)  =  (  seq M (  .+  , 
g ) `  x
) )  <->  A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k
)  /\  g :
( M ... k
) --> C )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  k )  =  (  seq M (  .+  ,  g ) `  k ) ) ) )
2625imbi2d 230 . . . . . 6  |-  ( x  =  k  ->  (
( ph  ->  A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x
)  /\  g :
( M ... x
) --> C )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  x )  =  (  seq M (  .+  ,  g ) `  x ) ) )  <-> 
( ph  ->  A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k
)  /\  g :
( M ... k
) --> C )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  k )  =  (  seq M (  .+  ,  g ) `  k ) ) ) ) )
27 oveq2 6002 . . . . . . . . . . 11  |-  ( x  =  ( k  +  1 )  ->  ( M ... x )  =  ( M ... (
k  +  1 ) ) )
28 f1oeq23 5559 . . . . . . . . . . 11  |-  ( ( ( M ... x
)  =  ( M ... ( k  +  1 ) )  /\  ( M ... x )  =  ( M ... ( k  +  1 ) ) )  -> 
( f : ( M ... x ) -1-1-onto-> ( M ... x )  <-> 
f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... ( k  +  1 ) ) ) )
2927, 27, 28syl2anc 411 . . . . . . . . . 10  |-  ( x  =  ( k  +  1 )  ->  (
f : ( M ... x ) -1-1-onto-> ( M ... x )  <->  f :
( M ... (
k  +  1 ) ) -1-1-onto-> ( M ... (
k  +  1 ) ) ) )
3027feq2d 5457 . . . . . . . . . 10  |-  ( x  =  ( k  +  1 )  ->  (
g : ( M ... x ) --> C  <-> 
g : ( M ... ( k  +  1 ) ) --> C ) )
3129, 30anbi12d 473 . . . . . . . . 9  |-  ( x  =  ( k  +  1 )  ->  (
( f : ( M ... x ) -1-1-onto-> ( M ... x )  /\  g : ( M ... x ) --> C )  <->  ( f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... (
k  +  1 ) )  /\  g : ( M ... (
k  +  1 ) ) --> C ) ) )
32 fveq2 5623 . . . . . . . . . 10  |-  ( x  =  ( k  +  1 )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  x
)  =  (  seq M (  .+  , 
( g  o.  f
) ) `  (
k  +  1 ) ) )
33 fveq2 5623 . . . . . . . . . 10  |-  ( x  =  ( k  +  1 )  ->  (  seq M (  .+  , 
g ) `  x
)  =  (  seq M (  .+  , 
g ) `  (
k  +  1 ) ) )
3432, 33eqeq12d 2244 . . . . . . . . 9  |-  ( x  =  ( k  +  1 )  ->  (
(  seq M (  .+  ,  ( g  o.  f ) ) `  x )  =  (  seq M (  .+  ,  g ) `  x )  <->  (  seq M (  .+  , 
( g  o.  f
) ) `  (
k  +  1 ) )  =  (  seq M (  .+  , 
g ) `  (
k  +  1 ) ) ) )
3531, 34imbi12d 234 . . . . . . . 8  |-  ( x  =  ( k  +  1 )  ->  (
( ( f : ( M ... x
)
-1-1-onto-> ( M ... x )  /\  g : ( M ... x ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  x
)  =  (  seq M (  .+  , 
g ) `  x
) )  <->  ( (
f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... ( k  +  1 ) )  /\  g : ( M ... ( k  +  1 ) ) --> C )  ->  (  seq M
(  .+  ,  (
g  o.  f ) ) `  ( k  +  1 ) )  =  (  seq M
(  .+  ,  g
) `  ( k  +  1 ) ) ) ) )
36352albidv 1913 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  ( A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x )  /\  g : ( M ... x ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  x
)  =  (  seq M (  .+  , 
g ) `  x
) )  <->  A. g A. f ( ( f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... (
k  +  1 ) )  /\  g : ( M ... (
k  +  1 ) ) --> C )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  ( k  +  1 ) )  =  (  seq M (  .+  ,  g ) `  ( k  +  1 ) ) ) ) )
3736imbi2d 230 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  (
( ph  ->  A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x
)  /\  g :
( M ... x
) --> C )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  x )  =  (  seq M (  .+  ,  g ) `  x ) ) )  <-> 
( ph  ->  A. g A. f ( ( f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... (
k  +  1 ) )  /\  g : ( M ... (
k  +  1 ) ) --> C )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  ( k  +  1 ) )  =  (  seq M (  .+  ,  g ) `  ( k  +  1 ) ) ) ) ) )
38 oveq2 6002 . . . . . . . . . . 11  |-  ( x  =  N  ->  ( M ... x )  =  ( M ... N
) )
39 f1oeq23 5559 . . . . . . . . . . 11  |-  ( ( ( M ... x
)  =  ( M ... N )  /\  ( M ... x )  =  ( M ... N ) )  -> 
( f : ( M ... x ) -1-1-onto-> ( M ... x )  <-> 
f : ( M ... N ) -1-1-onto-> ( M ... N ) ) )
4038, 38, 39syl2anc 411 . . . . . . . . . 10  |-  ( x  =  N  ->  (
f : ( M ... x ) -1-1-onto-> ( M ... x )  <->  f :
( M ... N
)
-1-1-onto-> ( M ... N ) ) )
4138feq2d 5457 . . . . . . . . . 10  |-  ( x  =  N  ->  (
g : ( M ... x ) --> C  <-> 
g : ( M ... N ) --> C ) )
4240, 41anbi12d 473 . . . . . . . . 9  |-  ( x  =  N  ->  (
( f : ( M ... x ) -1-1-onto-> ( M ... x )  /\  g : ( M ... x ) --> C )  <->  ( f : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  g :
( M ... N
) --> C ) ) )
43 fveq2 5623 . . . . . . . . . 10  |-  ( x  =  N  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  x
)  =  (  seq M (  .+  , 
( g  o.  f
) ) `  N
) )
44 fveq2 5623 . . . . . . . . . 10  |-  ( x  =  N  ->  (  seq M (  .+  , 
g ) `  x
)  =  (  seq M (  .+  , 
g ) `  N
) )
4543, 44eqeq12d 2244 . . . . . . . . 9  |-  ( x  =  N  ->  (
(  seq M (  .+  ,  ( g  o.  f ) ) `  x )  =  (  seq M (  .+  ,  g ) `  x )  <->  (  seq M (  .+  , 
( g  o.  f
) ) `  N
)  =  (  seq M (  .+  , 
g ) `  N
) ) )
4642, 45imbi12d 234 . . . . . . . 8  |-  ( x  =  N  ->  (
( ( f : ( M ... x
)
-1-1-onto-> ( M ... x )  /\  g : ( M ... x ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  x
)  =  (  seq M (  .+  , 
g ) `  x
) )  <->  ( (
f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  g : ( M ... N ) --> C )  ->  (  seq M
(  .+  ,  (
g  o.  f ) ) `  N )  =  (  seq M
(  .+  ,  g
) `  N )
) ) )
47462albidv 1913 . . . . . . 7  |-  ( x  =  N  ->  ( A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x )  /\  g : ( M ... x ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  x
)  =  (  seq M (  .+  , 
g ) `  x
) )  <->  A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  g :
( M ... N
) --> C )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  N )  =  (  seq M (  .+  ,  g ) `  N ) ) ) )
4847imbi2d 230 . . . . . 6  |-  ( x  =  N  ->  (
( ph  ->  A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x
)  /\  g :
( M ... x
) --> C )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  x )  =  (  seq M (  .+  ,  g ) `  x ) ) )  <-> 
( ph  ->  A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  g :
( M ... N
) --> C )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  N )  =  (  seq M (  .+  ,  g ) `  N ) ) ) ) )
49 f1of 5568 . . . . . . . . . . . . . 14  |-  ( f : ( M ... M ) -1-1-onto-> ( M ... M
)  ->  f :
( M ... M
) --> ( M ... M ) )
5049adantr 276 . . . . . . . . . . . . 13  |-  ( ( f : ( M ... M ) -1-1-onto-> ( M ... M )  /\  g : ( M ... M ) --> C )  ->  f : ( M ... M ) --> ( M ... M
) )
51 elfz3 10218 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  M  e.  ( M ... M
) )
52 fvco3 5698 . . . . . . . . . . . . 13  |-  ( ( f : ( M ... M ) --> ( M ... M )  /\  M  e.  ( M ... M ) )  ->  ( (
g  o.  f ) `
 M )  =  ( g `  (
f `  M )
) )
5350, 51, 52syl2anr 290 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  ( f : ( M ... M ) -1-1-onto-> ( M ... M )  /\  g : ( M ... M ) --> C ) )  -> 
( ( g  o.  f ) `  M
)  =  ( g `
 ( f `  M ) ) )
5453adantll 476 . . . . . . . . . . 11  |-  ( ( ( ph  /\  M  e.  ZZ )  /\  (
f : ( M ... M ) -1-1-onto-> ( M ... M )  /\  g : ( M ... M ) --> C ) )  ->  ( (
g  o.  f ) `
 M )  =  ( g `  (
f `  M )
) )
55 ffvelcdm 5761 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( M ... M ) --> ( M ... M )  /\  M  e.  ( M ... M ) )  ->  ( f `  M )  e.  ( M ... M ) )
5649, 51, 55syl2anr 290 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  f : ( M ... M ) -1-1-onto-> ( M ... M
) )  ->  (
f `  M )  e.  ( M ... M
) )
57 fzsn 10250 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
5857eleq2d 2299 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  ZZ  ->  (
( f `  M
)  e.  ( M ... M )  <->  ( f `  M )  e.  { M } ) )
59 elsni 3684 . . . . . . . . . . . . . . . . 17  |-  ( ( f `  M )  e.  { M }  ->  ( f `  M
)  =  M )
6058, 59biimtrdi 163 . . . . . . . . . . . . . . . 16  |-  ( M  e.  ZZ  ->  (
( f `  M
)  e.  ( M ... M )  -> 
( f `  M
)  =  M ) )
6160imp 124 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  ( f `  M
)  e.  ( M ... M ) )  ->  ( f `  M )  =  M )
6256, 61syldan 282 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  f : ( M ... M ) -1-1-onto-> ( M ... M
) )  ->  (
f `  M )  =  M )
6362adantrr 479 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  ( f : ( M ... M ) -1-1-onto-> ( M ... M )  /\  g : ( M ... M ) --> C ) )  -> 
( f `  M
)  =  M )
6463fveq2d 5627 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  ( f : ( M ... M ) -1-1-onto-> ( M ... M )  /\  g : ( M ... M ) --> C ) )  -> 
( g `  (
f `  M )
)  =  ( g `
 M ) )
6564adantll 476 . . . . . . . . . . 11  |-  ( ( ( ph  /\  M  e.  ZZ )  /\  (
f : ( M ... M ) -1-1-onto-> ( M ... M )  /\  g : ( M ... M ) --> C ) )  ->  ( g `  ( f `  M
) )  =  ( g `  M ) )
6654, 65eqtrd 2262 . . . . . . . . . 10  |-  ( ( ( ph  /\  M  e.  ZZ )  /\  (
f : ( M ... M ) -1-1-onto-> ( M ... M )  /\  g : ( M ... M ) --> C ) )  ->  ( (
g  o.  f ) `
 M )  =  ( g `  M
) )
67 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ph  /\  M  e.  ZZ )  /\  (
f : ( M ... M ) -1-1-onto-> ( M ... M )  /\  g : ( M ... M ) --> C ) )  ->  M  e.  ZZ )
68 vex 2802 . . . . . . . . . . . . 13  |-  g  e. 
_V
69 vex 2802 . . . . . . . . . . . . 13  |-  f  e. 
_V
7068, 69coex 5270 . . . . . . . . . . . 12  |-  ( g  o.  f )  e. 
_V
7170a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  M  e.  ZZ )  /\  (
f : ( M ... M ) -1-1-onto-> ( M ... M )  /\  g : ( M ... M ) --> C ) )  ->  ( g  o.  f )  e.  _V )
72 seqf1og.p . . . . . . . . . . . 12  |-  ( ph  ->  .+  e.  V )
7372ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  M  e.  ZZ )  /\  (
f : ( M ... M ) -1-1-onto-> ( M ... M )  /\  g : ( M ... M ) --> C ) )  ->  .+  e.  V
)
74 seq1g 10672 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  ( g  o.  f
)  e.  _V  /\  .+  e.  V )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  M )  =  ( ( g  o.  f
) `  M )
)
7567, 71, 73, 74syl3anc 1271 . . . . . . . . . 10  |-  ( ( ( ph  /\  M  e.  ZZ )  /\  (
f : ( M ... M ) -1-1-onto-> ( M ... M )  /\  g : ( M ... M ) --> C ) )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  M
)  =  ( ( g  o.  f ) `
 M ) )
7668a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  M  e.  ZZ )  /\  (
f : ( M ... M ) -1-1-onto-> ( M ... M )  /\  g : ( M ... M ) --> C ) )  ->  g  e.  _V )
77 seq1g 10672 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  g  e.  _V  /\  .+  e.  V )  ->  (  seq M (  .+  , 
g ) `  M
)  =  ( g `
 M ) )
7867, 76, 73, 77syl3anc 1271 . . . . . . . . . 10  |-  ( ( ( ph  /\  M  e.  ZZ )  /\  (
f : ( M ... M ) -1-1-onto-> ( M ... M )  /\  g : ( M ... M ) --> C ) )  ->  (  seq M (  .+  , 
g ) `  M
)  =  ( g `
 M ) )
7966, 75, 783eqtr4d 2272 . . . . . . . . 9  |-  ( ( ( ph  /\  M  e.  ZZ )  /\  (
f : ( M ... M ) -1-1-onto-> ( M ... M )  /\  g : ( M ... M ) --> C ) )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  M
)  =  (  seq M (  .+  , 
g ) `  M
) )
8079ex 115 . . . . . . . 8  |-  ( (
ph  /\  M  e.  ZZ )  ->  ( ( f : ( M ... M ) -1-1-onto-> ( M ... M )  /\  g : ( M ... M ) --> C )  ->  (  seq M
(  .+  ,  (
g  o.  f ) ) `  M )  =  (  seq M
(  .+  ,  g
) `  M )
) )
8180alrimivv 1921 . . . . . . 7  |-  ( (
ph  /\  M  e.  ZZ )  ->  A. g A. f ( ( f : ( M ... M ) -1-1-onto-> ( M ... M
)  /\  g :
( M ... M
) --> C )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  M )  =  (  seq M (  .+  ,  g ) `  M ) ) )
8281expcom 116 . . . . . 6  |-  ( M  e.  ZZ  ->  ( ph  ->  A. g A. f
( ( f : ( M ... M
)
-1-1-onto-> ( M ... M )  /\  g : ( M ... M ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  M
)  =  (  seq M (  .+  , 
g ) `  M
) ) ) )
83 f1oeq1 5556 . . . . . . . . . . . 12  |-  ( f  =  t  ->  (
f : ( M ... k ) -1-1-onto-> ( M ... k )  <->  t :
( M ... k
)
-1-1-onto-> ( M ... k ) ) )
84 feq1 5452 . . . . . . . . . . . 12  |-  ( g  =  s  ->  (
g : ( M ... k ) --> C  <-> 
s : ( M ... k ) --> C ) )
8583, 84bi2anan9r 609 . . . . . . . . . . 11  |-  ( ( g  =  s  /\  f  =  t )  ->  ( ( f : ( M ... k
)
-1-1-onto-> ( M ... k )  /\  g : ( M ... k ) --> C )  <->  ( t : ( M ... k ) -1-1-onto-> ( M ... k
)  /\  s :
( M ... k
) --> C ) ) )
86 coeq1 4876 . . . . . . . . . . . . . . 15  |-  ( g  =  s  ->  (
g  o.  f )  =  ( s  o.  f ) )
87 coeq2 4877 . . . . . . . . . . . . . . 15  |-  ( f  =  t  ->  (
s  o.  f )  =  ( s  o.  t ) )
8886, 87sylan9eq 2282 . . . . . . . . . . . . . 14  |-  ( ( g  =  s  /\  f  =  t )  ->  ( g  o.  f
)  =  ( s  o.  t ) )
8988seqeq3d 10664 . . . . . . . . . . . . 13  |-  ( ( g  =  s  /\  f  =  t )  ->  seq M (  .+  ,  ( g  o.  f ) )  =  seq M (  .+  ,  ( s  o.  t ) ) )
9089fveq1d 5625 . . . . . . . . . . . 12  |-  ( ( g  =  s  /\  f  =  t )  ->  (  seq M ( 
.+  ,  ( g  o.  f ) ) `
 k )  =  (  seq M ( 
.+  ,  ( s  o.  t ) ) `
 k ) )
91 simpl 109 . . . . . . . . . . . . . 14  |-  ( ( g  =  s  /\  f  =  t )  ->  g  =  s )
9291seqeq3d 10664 . . . . . . . . . . . . 13  |-  ( ( g  =  s  /\  f  =  t )  ->  seq M (  .+  ,  g )  =  seq M (  .+  ,  s ) )
9392fveq1d 5625 . . . . . . . . . . . 12  |-  ( ( g  =  s  /\  f  =  t )  ->  (  seq M ( 
.+  ,  g ) `
 k )  =  (  seq M ( 
.+  ,  s ) `
 k ) )
9490, 93eqeq12d 2244 . . . . . . . . . . 11  |-  ( ( g  =  s  /\  f  =  t )  ->  ( (  seq M
(  .+  ,  (
g  o.  f ) ) `  k )  =  (  seq M
(  .+  ,  g
) `  k )  <->  (  seq M (  .+  ,  ( s  o.  t ) ) `  k )  =  (  seq M (  .+  ,  s ) `  k ) ) )
9585, 94imbi12d 234 . . . . . . . . . 10  |-  ( ( g  =  s  /\  f  =  t )  ->  ( ( ( f : ( M ... k ) -1-1-onto-> ( M ... k
)  /\  g :
( M ... k
) --> C )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  k )  =  (  seq M (  .+  ,  g ) `  k ) )  <->  ( (
t : ( M ... k ) -1-1-onto-> ( M ... k )  /\  s : ( M ... k ) --> C )  ->  (  seq M
(  .+  ,  (
s  o.  t ) ) `  k )  =  (  seq M
(  .+  ,  s
) `  k )
) ) )
9695cbval2vw 1979 . . . . . . . . 9  |-  ( A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k )  /\  g : ( M ... k ) --> C )  ->  (  seq M
(  .+  ,  (
g  o.  f ) ) `  k )  =  (  seq M
(  .+  ,  g
) `  k )
)  <->  A. s A. t
( ( t : ( M ... k
)
-1-1-onto-> ( M ... k )  /\  s : ( M ... k ) --> C )  ->  (  seq M (  .+  , 
( s  o.  t
) ) `  k
)  =  (  seq M (  .+  , 
s ) `  k
) ) )
97 simplll 533 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  /\  A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k )  /\  g : ( M ... k ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  k
)  =  (  seq M (  .+  , 
g ) `  k
) ) )  /\  ( f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... ( k  +  1 ) )  /\  g : ( M ... ( k  +  1 ) ) --> C ) )  ->  ph )
98 seqf1o.1 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
9997, 98sylan 283 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  /\  A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k )  /\  g : ( M ... k ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  k
)  =  (  seq M (  .+  , 
g ) `  k
) ) )  /\  ( f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... ( k  +  1 ) )  /\  g : ( M ... ( k  +  1 ) ) --> C ) )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  (
x  .+  y )  e.  S )
100 seqf1o.2 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
10197, 100sylan 283 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  /\  A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k )  /\  g : ( M ... k ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  k
)  =  (  seq M (  .+  , 
g ) `  k
) ) )  /\  ( f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... ( k  +  1 ) )  /\  g : ( M ... ( k  +  1 ) ) --> C ) )  /\  ( x  e.  C  /\  y  e.  C
) )  ->  (
x  .+  y )  =  ( y  .+  x ) )
102 seqf1o.3 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
10397, 102sylan 283 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  /\  A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k )  /\  g : ( M ... k ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  k
)  =  (  seq M (  .+  , 
g ) `  k
) ) )  /\  ( f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... ( k  +  1 ) )  /\  g : ( M ... ( k  +  1 ) ) --> C ) )  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
104 simpllr 534 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  /\  A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k )  /\  g : ( M ... k ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  k
)  =  (  seq M (  .+  , 
g ) `  k
) ) )  /\  ( f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... ( k  +  1 ) )  /\  g : ( M ... ( k  +  1 ) ) --> C ) )  -> 
k  e.  ( ZZ>= `  M ) )
105 seqf1o.5 . . . . . . . . . . . . . . 15  |-  ( ph  ->  C  C_  S )
10697, 105syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  /\  A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k )  /\  g : ( M ... k ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  k
)  =  (  seq M (  .+  , 
g ) `  k
) ) )  /\  ( f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... ( k  +  1 ) )  /\  g : ( M ... ( k  +  1 ) ) --> C ) )  ->  C  C_  S )
10797, 72syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  /\  A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k )  /\  g : ( M ... k ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  k
)  =  (  seq M (  .+  , 
g ) `  k
) ) )  /\  ( f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... ( k  +  1 ) )  /\  g : ( M ... ( k  +  1 ) ) --> C ) )  ->  .+  e.  V )
108 simprl 529 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  /\  A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k )  /\  g : ( M ... k ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  k
)  =  (  seq M (  .+  , 
g ) `  k
) ) )  /\  ( f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... ( k  +  1 ) )  /\  g : ( M ... ( k  +  1 ) ) --> C ) )  -> 
f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... ( k  +  1 ) ) )
109 simprr 531 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  /\  A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k )  /\  g : ( M ... k ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  k
)  =  (  seq M (  .+  , 
g ) `  k
) ) )  /\  ( f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... ( k  +  1 ) )  /\  g : ( M ... ( k  +  1 ) ) --> C ) )  -> 
g : ( M ... ( k  +  1 ) ) --> C )
110 eqid 2229 . . . . . . . . . . . . . 14  |-  ( w  e.  ( M ... k )  |->  ( f `
 if ( w  <  ( `' f `
 ( k  +  1 ) ) ,  w ,  ( w  +  1 ) ) ) )  =  ( w  e.  ( M ... k )  |->  ( f `  if ( w  <  ( `' f `  ( k  +  1 ) ) ,  w ,  ( w  +  1 ) ) ) )
111 eqid 2229 . . . . . . . . . . . . . 14  |-  ( `' f `  ( k  +  1 ) )  =  ( `' f `
 ( k  +  1 ) )
112 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  /\  A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k )  /\  g : ( M ... k ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  k
)  =  (  seq M (  .+  , 
g ) `  k
) ) )  /\  ( f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... ( k  +  1 ) )  /\  g : ( M ... ( k  +  1 ) ) --> C ) )  ->  A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k )  /\  g : ( M ... k ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  k
)  =  (  seq M (  .+  , 
g ) `  k
) ) )
113112, 96sylib 122 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  /\  A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k )  /\  g : ( M ... k ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  k
)  =  (  seq M (  .+  , 
g ) `  k
) ) )  /\  ( f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... ( k  +  1 ) )  /\  g : ( M ... ( k  +  1 ) ) --> C ) )  ->  A. s A. t ( ( t : ( M ... k ) -1-1-onto-> ( M ... k )  /\  s : ( M ... k ) --> C )  ->  (  seq M (  .+  , 
( s  o.  t
) ) `  k
)  =  (  seq M (  .+  , 
s ) `  k
) ) )
11499, 101, 103, 104, 106, 107, 108, 109, 110, 111, 113seqf1oglem2 10729 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  /\  A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k )  /\  g : ( M ... k ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  k
)  =  (  seq M (  .+  , 
g ) `  k
) ) )  /\  ( f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... ( k  +  1 ) )  /\  g : ( M ... ( k  +  1 ) ) --> C ) )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  ( k  +  1 ) )  =  (  seq M (  .+  ,  g ) `  ( k  +  1 ) ) )
115114exp31 364 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k )  /\  g : ( M ... k ) --> C )  ->  (  seq M
(  .+  ,  (
g  o.  f ) ) `  k )  =  (  seq M
(  .+  ,  g
) `  k )
)  ->  ( (
f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... ( k  +  1 ) )  /\  g : ( M ... ( k  +  1 ) ) --> C )  ->  (  seq M
(  .+  ,  (
g  o.  f ) ) `  ( k  +  1 ) )  =  (  seq M
(  .+  ,  g
) `  ( k  +  1 ) ) ) ) )
11696, 115biimtrrid 153 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A. s A. t ( ( t : ( M ... k ) -1-1-onto-> ( M ... k )  /\  s : ( M ... k ) --> C )  ->  (  seq M
(  .+  ,  (
s  o.  t ) ) `  k )  =  (  seq M
(  .+  ,  s
) `  k )
)  ->  ( (
f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... ( k  +  1 ) )  /\  g : ( M ... ( k  +  1 ) ) --> C )  ->  (  seq M
(  .+  ,  (
g  o.  f ) ) `  ( k  +  1 ) )  =  (  seq M
(  .+  ,  g
) `  ( k  +  1 ) ) ) ) )
117116alrimdv 1922 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A. s A. t ( ( t : ( M ... k ) -1-1-onto-> ( M ... k )  /\  s : ( M ... k ) --> C )  ->  (  seq M
(  .+  ,  (
s  o.  t ) ) `  k )  =  (  seq M
(  .+  ,  s
) `  k )
)  ->  A. f
( ( f : ( M ... (
k  +  1 ) ) -1-1-onto-> ( M ... (
k  +  1 ) )  /\  g : ( M ... (
k  +  1 ) ) --> C )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  ( k  +  1 ) )  =  (  seq M (  .+  ,  g ) `  ( k  +  1 ) ) ) ) )
118117alrimdv 1922 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A. s A. t ( ( t : ( M ... k ) -1-1-onto-> ( M ... k )  /\  s : ( M ... k ) --> C )  ->  (  seq M
(  .+  ,  (
s  o.  t ) ) `  k )  =  (  seq M
(  .+  ,  s
) `  k )
)  ->  A. g A. f ( ( f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... (
k  +  1 ) )  /\  g : ( M ... (
k  +  1 ) ) --> C )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  ( k  +  1 ) )  =  (  seq M (  .+  ,  g ) `  ( k  +  1 ) ) ) ) )
11996, 118biimtrid 152 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k )  /\  g : ( M ... k ) --> C )  ->  (  seq M
(  .+  ,  (
g  o.  f ) ) `  k )  =  (  seq M
(  .+  ,  g
) `  k )
)  ->  A. g A. f ( ( f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... (
k  +  1 ) )  /\  g : ( M ... (
k  +  1 ) ) --> C )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  ( k  +  1 ) )  =  (  seq M (  .+  ,  g ) `  ( k  +  1 ) ) ) ) )
120119expcom 116 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k
)  /\  g :
( M ... k
) --> C )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  k )  =  (  seq M (  .+  ,  g ) `  k ) )  ->  A. g A. f ( ( f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... ( k  +  1 ) )  /\  g : ( M ... ( k  +  1 ) ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  (
k  +  1 ) )  =  (  seq M (  .+  , 
g ) `  (
k  +  1 ) ) ) ) ) )
121120a2d 26 . . . . . 6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  A. g A. f
( ( f : ( M ... k
)
-1-1-onto-> ( M ... k )  /\  g : ( M ... k ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  k
)  =  (  seq M (  .+  , 
g ) `  k
) ) )  -> 
( ph  ->  A. g A. f ( ( f : ( M ... ( k  +  1 ) ) -1-1-onto-> ( M ... (
k  +  1 ) )  /\  g : ( M ... (
k  +  1 ) ) --> C )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  ( k  +  1 ) )  =  (  seq M (  .+  ,  g ) `  ( k  +  1 ) ) ) ) ) )
12215, 26, 37, 48, 82, 121uzind4 9771 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  A. g A. f
( ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  g : ( M ... N ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  N
)  =  (  seq M (  .+  , 
g ) `  N
) ) ) )
1234, 122mpcom 36 . . . 4  |-  ( ph  ->  A. g A. f
( ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  g : ( M ... N ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  N
)  =  (  seq M (  .+  , 
g ) `  N
) ) )
1242ralrimiva 2603 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( M ... N ) ( G `  x
)  e.  C )
125 eqid 2229 . . . . . . . 8  |-  ( x  e.  ( M ... N )  |->  ( G `
 x ) )  =  ( x  e.  ( M ... N
)  |->  ( G `  x ) )
126125fnmpt 5446 . . . . . . 7  |-  ( A. x  e.  ( M ... N ) ( G `
 x )  e.  C  ->  ( x  e.  ( M ... N
)  |->  ( G `  x ) )  Fn  ( M ... N
) )
127124, 126syl 14 . . . . . 6  |-  ( ph  ->  ( x  e.  ( M ... N ) 
|->  ( G `  x
) )  Fn  ( M ... N ) )
128 eluzel2 9715 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
1294, 128syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
130 eluzelz 9719 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
1314, 130syl 14 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
132129, 131fzfigd 10640 . . . . . 6  |-  ( ph  ->  ( M ... N
)  e.  Fin )
133 fnfi 7091 . . . . . 6  |-  ( ( ( x  e.  ( M ... N ) 
|->  ( G `  x
) )  Fn  ( M ... N )  /\  ( M ... N )  e.  Fin )  -> 
( x  e.  ( M ... N ) 
|->  ( G `  x
) )  e.  Fin )
134127, 132, 133syl2anc 411 . . . . 5  |-  ( ph  ->  ( x  e.  ( M ... N ) 
|->  ( G `  x
) )  e.  Fin )
135 f1of 5568 . . . . . . 7  |-  ( F : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  F :
( M ... N
) --> ( M ... N ) )
1361, 135syl 14 . . . . . 6  |-  ( ph  ->  F : ( M ... N ) --> ( M ... N ) )
137136, 132fexd 5862 . . . . 5  |-  ( ph  ->  F  e.  _V )
138 f1oeq1 5556 . . . . . . . 8  |-  ( f  =  F  ->  (
f : ( M ... N ) -1-1-onto-> ( M ... N )  <->  F :
( M ... N
)
-1-1-onto-> ( M ... N ) ) )
139 feq1 5452 . . . . . . . 8  |-  ( g  =  ( x  e.  ( M ... N
)  |->  ( G `  x ) )  -> 
( g : ( M ... N ) --> C  <->  ( x  e.  ( M ... N
)  |->  ( G `  x ) ) : ( M ... N
) --> C ) )
140138, 139bi2anan9r 609 . . . . . . 7  |-  ( ( g  =  ( x  e.  ( M ... N )  |->  ( G `
 x ) )  /\  f  =  F )  ->  ( (
f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  g : ( M ... N ) --> C )  <-> 
( F : ( M ... N ) -1-1-onto-> ( M ... N )  /\  ( x  e.  ( M ... N
)  |->  ( G `  x ) ) : ( M ... N
) --> C ) ) )
141 coeq1 4876 . . . . . . . . . . 11  |-  ( g  =  ( x  e.  ( M ... N
)  |->  ( G `  x ) )  -> 
( g  o.  f
)  =  ( ( x  e.  ( M ... N )  |->  ( G `  x ) )  o.  f ) )
142 coeq2 4877 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
( x  e.  ( M ... N ) 
|->  ( G `  x
) )  o.  f
)  =  ( ( x  e.  ( M ... N )  |->  ( G `  x ) )  o.  F ) )
143141, 142sylan9eq 2282 . . . . . . . . . 10  |-  ( ( g  =  ( x  e.  ( M ... N )  |->  ( G `
 x ) )  /\  f  =  F )  ->  ( g  o.  f )  =  ( ( x  e.  ( M ... N ) 
|->  ( G `  x
) )  o.  F
) )
144143seqeq3d 10664 . . . . . . . . 9  |-  ( ( g  =  ( x  e.  ( M ... N )  |->  ( G `
 x ) )  /\  f  =  F )  ->  seq M ( 
.+  ,  ( g  o.  f ) )  =  seq M ( 
.+  ,  ( ( x  e.  ( M ... N )  |->  ( G `  x ) )  o.  F ) ) )
145144fveq1d 5625 . . . . . . . 8  |-  ( ( g  =  ( x  e.  ( M ... N )  |->  ( G `
 x ) )  /\  f  =  F )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  N
)  =  (  seq M (  .+  , 
( ( x  e.  ( M ... N
)  |->  ( G `  x ) )  o.  F ) ) `  N ) )
146 simpl 109 . . . . . . . . . 10  |-  ( ( g  =  ( x  e.  ( M ... N )  |->  ( G `
 x ) )  /\  f  =  F )  ->  g  =  ( x  e.  ( M ... N )  |->  ( G `  x ) ) )
147146seqeq3d 10664 . . . . . . . . 9  |-  ( ( g  =  ( x  e.  ( M ... N )  |->  ( G `
 x ) )  /\  f  =  F )  ->  seq M ( 
.+  ,  g )  =  seq M ( 
.+  ,  ( x  e.  ( M ... N )  |->  ( G `
 x ) ) ) )
148147fveq1d 5625 . . . . . . . 8  |-  ( ( g  =  ( x  e.  ( M ... N )  |->  ( G `
 x ) )  /\  f  =  F )  ->  (  seq M (  .+  , 
g ) `  N
)  =  (  seq M (  .+  , 
( x  e.  ( M ... N ) 
|->  ( G `  x
) ) ) `  N ) )
149145, 148eqeq12d 2244 . . . . . . 7  |-  ( ( g  =  ( x  e.  ( M ... N )  |->  ( G `
 x ) )  /\  f  =  F )  ->  ( (  seq M (  .+  , 
( g  o.  f
) ) `  N
)  =  (  seq M (  .+  , 
g ) `  N
)  <->  (  seq M
(  .+  ,  (
( x  e.  ( M ... N ) 
|->  ( G `  x
) )  o.  F
) ) `  N
)  =  (  seq M (  .+  , 
( x  e.  ( M ... N ) 
|->  ( G `  x
) ) ) `  N ) ) )
150140, 149imbi12d 234 . . . . . 6  |-  ( ( g  =  ( x  e.  ( M ... N )  |->  ( G `
 x ) )  /\  f  =  F )  ->  ( (
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  g : ( M ... N ) --> C )  ->  (  seq M (  .+  , 
( g  o.  f
) ) `  N
)  =  (  seq M (  .+  , 
g ) `  N
) )  <->  ( ( F : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  ( x  e.  ( M ... N
)  |->  ( G `  x ) ) : ( M ... N
) --> C )  -> 
(  seq M (  .+  ,  ( ( x  e.  ( M ... N )  |->  ( G `
 x ) )  o.  F ) ) `
 N )  =  (  seq M ( 
.+  ,  ( x  e.  ( M ... N )  |->  ( G `
 x ) ) ) `  N ) ) ) )
151150spc2gv 2894 . . . . 5  |-  ( ( ( x  e.  ( M ... N ) 
|->  ( G `  x
) )  e.  Fin  /\  F  e.  _V )  ->  ( A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  g :
( M ... N
) --> C )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  N )  =  (  seq M (  .+  ,  g ) `  N ) )  -> 
( ( F :
( M ... N
)
-1-1-onto-> ( M ... N )  /\  ( x  e.  ( M ... N
)  |->  ( G `  x ) ) : ( M ... N
) --> C )  -> 
(  seq M (  .+  ,  ( ( x  e.  ( M ... N )  |->  ( G `
 x ) )  o.  F ) ) `
 N )  =  (  seq M ( 
.+  ,  ( x  e.  ( M ... N )  |->  ( G `
 x ) ) ) `  N ) ) ) )
152134, 137, 151syl2anc 411 . . . 4  |-  ( ph  ->  ( A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  g :
( M ... N
) --> C )  -> 
(  seq M (  .+  ,  ( g  o.  f ) ) `  N )  =  (  seq M (  .+  ,  g ) `  N ) )  -> 
( ( F :
( M ... N
)
-1-1-onto-> ( M ... N )  /\  ( x  e.  ( M ... N
)  |->  ( G `  x ) ) : ( M ... N
) --> C )  -> 
(  seq M (  .+  ,  ( ( x  e.  ( M ... N )  |->  ( G `
 x ) )  o.  F ) ) `
 N )  =  (  seq M ( 
.+  ,  ( x  e.  ( M ... N )  |->  ( G `
 x ) ) ) `  N ) ) ) )
153123, 152mpd 13 . . 3  |-  ( ph  ->  ( ( F :
( M ... N
)
-1-1-onto-> ( M ... N )  /\  ( x  e.  ( M ... N
)  |->  ( G `  x ) ) : ( M ... N
) --> C )  -> 
(  seq M (  .+  ,  ( ( x  e.  ( M ... N )  |->  ( G `
 x ) )  o.  F ) ) `
 N )  =  (  seq M ( 
.+  ,  ( x  e.  ( M ... N )  |->  ( G `
 x ) ) ) `  N ) ) )
1541, 3, 153mp2and 433 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  ( ( x  e.  ( M ... N )  |->  ( G `  x ) )  o.  F ) ) `  N )  =  (  seq M
(  .+  ,  (
x  e.  ( M ... N )  |->  ( G `  x ) ) ) `  N
) )
155 fveq2 5623 . . . . 5  |-  ( x  =  ( F `  k )  ->  ( G `  x )  =  ( G `  ( F `  k ) ) )
156136ffvelcdmda 5763 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  ( M ... N ) )
157155eleq1d 2298 . . . . . 6  |-  ( x  =  ( F `  k )  ->  (
( G `  x
)  e.  C  <->  ( G `  ( F `  k
) )  e.  C
) )
158124adantr 276 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A. x  e.  ( M ... N
) ( G `  x )  e.  C
)
159157, 158, 156rspcdva 2912 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  ( F `  k
) )  e.  C
)
160125, 155, 156, 159fvmptd3 5721 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
x  e.  ( M ... N )  |->  ( G `  x ) ) `  ( F `
 k ) )  =  ( G `  ( F `  k ) ) )
161 fvco3 5698 . . . . 5  |-  ( ( F : ( M ... N ) --> ( M ... N )  /\  k  e.  ( M ... N ) )  ->  ( (
( x  e.  ( M ... N ) 
|->  ( G `  x
) )  o.  F
) `  k )  =  ( ( x  e.  ( M ... N )  |->  ( G `
 x ) ) `
 ( F `  k ) ) )
162136, 161sylan 283 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
( x  e.  ( M ... N ) 
|->  ( G `  x
) )  o.  F
) `  k )  =  ( ( x  e.  ( M ... N )  |->  ( G `
 x ) ) `
 ( F `  k ) ) )
163 seqf1o.8 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( G `  ( F `
 k ) ) )
164160, 162, 1633eqtr4d 2272 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
( x  e.  ( M ... N ) 
|->  ( G `  x
) )  o.  F
) `  k )  =  ( H `  k ) )
165134elexd 2813 . . . 4  |-  ( ph  ->  ( x  e.  ( M ... N ) 
|->  ( G `  x
) )  e.  _V )
166 coexg 5269 . . . 4  |-  ( ( ( x  e.  ( M ... N ) 
|->  ( G `  x
) )  e.  _V  /\  F  e.  _V )  ->  ( ( x  e.  ( M ... N
)  |->  ( G `  x ) )  o.  F )  e.  _V )
167165, 137, 166syl2anc 411 . . 3  |-  ( ph  ->  ( ( x  e.  ( M ... N
)  |->  ( G `  x ) )  o.  F )  e.  _V )
168 seqf1og.h . . 3  |-  ( ph  ->  H  e.  X )
1694, 164, 72, 167, 168seqfveqg 10687 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  ( ( x  e.  ( M ... N )  |->  ( G `  x ) )  o.  F ) ) `  N )  =  (  seq M
(  .+  ,  H
) `  N )
)
170 fveq2 5623 . . . 4  |-  ( x  =  k  ->  ( G `  x )  =  ( G `  k ) )
171 simpr 110 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  k  e.  ( M ... N ) )
172170eleq1d 2298 . . . . 5  |-  ( x  =  k  ->  (
( G `  x
)  e.  C  <->  ( G `  k )  e.  C
) )
173172, 158, 171rspcdva 2912 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  e.  C
)
174125, 170, 171, 173fvmptd3 5721 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
x  e.  ( M ... N )  |->  ( G `  x ) ) `  k )  =  ( G `  k ) )
175 seqf1og.g . . 3  |-  ( ph  ->  G  e.  W )
1764, 174, 72, 134, 175seqfveqg 10687 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  ( x  e.  ( M ... N )  |->  ( G `
 x ) ) ) `  N )  =  (  seq M
(  .+  ,  G
) `  N )
)
177154, 169, 1763eqtr3d 2270 1  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  (  seq M ( 
.+  ,  G ) `
 N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002   A.wal 1393    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197   ifcif 3602   {csn 3666   class class class wbr 4082    |-> cmpt 4144   `'ccnv 4715    o. ccom 4720    Fn wfn 5309   -->wf 5310   -1-1-onto->wf1o 5313   ` cfv 5314  (class class class)co 5994   Fincfn 6877   1c1 7988    + caddc 7990    < clt 8169   ZZcz 9434   ZZ>=cuz 9710   ...cfz 10192    seqcseq 10656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-1o 6552  df-er 6670  df-en 6878  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-inn 9099  df-n0 9358  df-z 9435  df-uz 9711  df-fz 10193  df-fzo 10327  df-seqfrec 10657
This theorem is referenced by:  gsumfzreidx  13860
  Copyright terms: Public domain W3C validator