ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjuomnilemres GIF version

Theorem fodjuomnilemres 7311
Description: Lemma for fodjuomni 7312. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 29-Jul-2022.)
Hypotheses
Ref Expression
fodjuomni.o (𝜑𝑂 ∈ Omni)
fodjuomni.fo (𝜑𝐹:𝑂onto→(𝐴𝐵))
fodjuomni.p 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
Assertion
Ref Expression
fodjuomnilemres (𝜑 → (∃𝑥 𝑥𝐴𝐴 = ∅))
Distinct variable groups:   𝜑,𝑦,𝑧   𝑦,𝑂,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑥,𝐴,𝑧   𝑦,𝐴   𝑦,𝐹   𝑦,𝑃,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑦)   𝑃(𝑥)   𝐹(𝑥)   𝑂(𝑥)

Proof of Theorem fodjuomnilemres
Dummy variables 𝑣 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5625 . . . . . 6 (𝑓 = 𝑃 → (𝑓𝑤) = (𝑃𝑤))
21eqeq1d 2238 . . . . 5 (𝑓 = 𝑃 → ((𝑓𝑤) = ∅ ↔ (𝑃𝑤) = ∅))
32rexbidv 2531 . . . 4 (𝑓 = 𝑃 → (∃𝑤𝑂 (𝑓𝑤) = ∅ ↔ ∃𝑤𝑂 (𝑃𝑤) = ∅))
41eqeq1d 2238 . . . . 5 (𝑓 = 𝑃 → ((𝑓𝑤) = 1o ↔ (𝑃𝑤) = 1o))
54ralbidv 2530 . . . 4 (𝑓 = 𝑃 → (∀𝑤𝑂 (𝑓𝑤) = 1o ↔ ∀𝑤𝑂 (𝑃𝑤) = 1o))
63, 5orbi12d 798 . . 3 (𝑓 = 𝑃 → ((∃𝑤𝑂 (𝑓𝑤) = ∅ ∨ ∀𝑤𝑂 (𝑓𝑤) = 1o) ↔ (∃𝑤𝑂 (𝑃𝑤) = ∅ ∨ ∀𝑤𝑂 (𝑃𝑤) = 1o)))
7 fodjuomni.o . . . 4 (𝜑𝑂 ∈ Omni)
8 isomnimap 7300 . . . . 5 (𝑂 ∈ Omni → (𝑂 ∈ Omni ↔ ∀𝑓 ∈ (2o𝑚 𝑂)(∃𝑤𝑂 (𝑓𝑤) = ∅ ∨ ∀𝑤𝑂 (𝑓𝑤) = 1o)))
97, 8syl 14 . . . 4 (𝜑 → (𝑂 ∈ Omni ↔ ∀𝑓 ∈ (2o𝑚 𝑂)(∃𝑤𝑂 (𝑓𝑤) = ∅ ∨ ∀𝑤𝑂 (𝑓𝑤) = 1o)))
107, 9mpbid 147 . . 3 (𝜑 → ∀𝑓 ∈ (2o𝑚 𝑂)(∃𝑤𝑂 (𝑓𝑤) = ∅ ∨ ∀𝑤𝑂 (𝑓𝑤) = 1o))
11 fodjuomni.fo . . . 4 (𝜑𝐹:𝑂onto→(𝐴𝐵))
12 fodjuomni.p . . . 4 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
1311, 12, 7fodjuf 7308 . . 3 (𝜑𝑃 ∈ (2o𝑚 𝑂))
146, 10, 13rspcdva 2912 . 2 (𝜑 → (∃𝑤𝑂 (𝑃𝑤) = ∅ ∨ ∀𝑤𝑂 (𝑃𝑤) = 1o))
1511adantr 276 . . . . 5 ((𝜑 ∧ ∃𝑤𝑂 (𝑃𝑤) = ∅) → 𝐹:𝑂onto→(𝐴𝐵))
16 simpr 110 . . . . . 6 ((𝜑 ∧ ∃𝑤𝑂 (𝑃𝑤) = ∅) → ∃𝑤𝑂 (𝑃𝑤) = ∅)
17 fveqeq2 5635 . . . . . . 7 (𝑤 = 𝑣 → ((𝑃𝑤) = ∅ ↔ (𝑃𝑣) = ∅))
1817cbvrexv 2766 . . . . . 6 (∃𝑤𝑂 (𝑃𝑤) = ∅ ↔ ∃𝑣𝑂 (𝑃𝑣) = ∅)
1916, 18sylib 122 . . . . 5 ((𝜑 ∧ ∃𝑤𝑂 (𝑃𝑤) = ∅) → ∃𝑣𝑂 (𝑃𝑣) = ∅)
2015, 12, 19fodjum 7309 . . . 4 ((𝜑 ∧ ∃𝑤𝑂 (𝑃𝑤) = ∅) → ∃𝑥 𝑥𝐴)
2120ex 115 . . 3 (𝜑 → (∃𝑤𝑂 (𝑃𝑤) = ∅ → ∃𝑥 𝑥𝐴))
2211adantr 276 . . . . 5 ((𝜑 ∧ ∀𝑤𝑂 (𝑃𝑤) = 1o) → 𝐹:𝑂onto→(𝐴𝐵))
23 simpr 110 . . . . 5 ((𝜑 ∧ ∀𝑤𝑂 (𝑃𝑤) = 1o) → ∀𝑤𝑂 (𝑃𝑤) = 1o)
2422, 12, 23fodju0 7310 . . . 4 ((𝜑 ∧ ∀𝑤𝑂 (𝑃𝑤) = 1o) → 𝐴 = ∅)
2524ex 115 . . 3 (𝜑 → (∀𝑤𝑂 (𝑃𝑤) = 1o𝐴 = ∅))
2621, 25orim12d 791 . 2 (𝜑 → ((∃𝑤𝑂 (𝑃𝑤) = ∅ ∨ ∀𝑤𝑂 (𝑃𝑤) = 1o) → (∃𝑥 𝑥𝐴𝐴 = ∅)))
2714, 26mpd 13 1 (𝜑 → (∃𝑥 𝑥𝐴𝐴 = ∅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  c0 3491  ifcif 3602  cmpt 4144  ontowfo 5315  cfv 5317  (class class class)co 6000  1oc1o 6553  2oc2o 6554  𝑚 cmap 6793  cdju 7200  inlcinl 7208  Omnicomni 7297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-1o 6560  df-2o 6561  df-map 6795  df-dju 7201  df-inl 7210  df-inr 7211  df-omni 7298
This theorem is referenced by:  fodjuomni  7312
  Copyright terms: Public domain W3C validator