![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fodjuomnilemres | GIF version |
Description: Lemma for fodjuomni 7208. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 29-Jul-2022.) |
Ref | Expression |
---|---|
fodjuomni.o | ⊢ (𝜑 → 𝑂 ∈ Omni) |
fodjuomni.fo | ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
fodjuomni.p | ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
Ref | Expression |
---|---|
fodjuomnilemres | ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 5553 | . . . . . 6 ⊢ (𝑓 = 𝑃 → (𝑓‘𝑤) = (𝑃‘𝑤)) | |
2 | 1 | eqeq1d 2202 | . . . . 5 ⊢ (𝑓 = 𝑃 → ((𝑓‘𝑤) = ∅ ↔ (𝑃‘𝑤) = ∅)) |
3 | 2 | rexbidv 2495 | . . . 4 ⊢ (𝑓 = 𝑃 → (∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ↔ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅)) |
4 | 1 | eqeq1d 2202 | . . . . 5 ⊢ (𝑓 = 𝑃 → ((𝑓‘𝑤) = 1o ↔ (𝑃‘𝑤) = 1o)) |
5 | 4 | ralbidv 2494 | . . . 4 ⊢ (𝑓 = 𝑃 → (∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o ↔ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o)) |
6 | 3, 5 | orbi12d 794 | . . 3 ⊢ (𝑓 = 𝑃 → ((∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o) ↔ (∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o))) |
7 | fodjuomni.o | . . . 4 ⊢ (𝜑 → 𝑂 ∈ Omni) | |
8 | isomnimap 7196 | . . . . 5 ⊢ (𝑂 ∈ Omni → (𝑂 ∈ Omni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝑂)(∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o))) | |
9 | 7, 8 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑂 ∈ Omni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝑂)(∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o))) |
10 | 7, 9 | mpbid 147 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ (2o ↑𝑚 𝑂)(∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o)) |
11 | fodjuomni.fo | . . . 4 ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) | |
12 | fodjuomni.p | . . . 4 ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) | |
13 | 11, 12, 7 | fodjuf 7204 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑂)) |
14 | 6, 10, 13 | rspcdva 2869 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o)) |
15 | 11 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
16 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) → ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) | |
17 | fveqeq2 5563 | . . . . . . 7 ⊢ (𝑤 = 𝑣 → ((𝑃‘𝑤) = ∅ ↔ (𝑃‘𝑣) = ∅)) | |
18 | 17 | cbvrexv 2727 | . . . . . 6 ⊢ (∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ ↔ ∃𝑣 ∈ 𝑂 (𝑃‘𝑣) = ∅) |
19 | 16, 18 | sylib 122 | . . . . 5 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) → ∃𝑣 ∈ 𝑂 (𝑃‘𝑣) = ∅) |
20 | 15, 12, 19 | fodjum 7205 | . . . 4 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) → ∃𝑥 𝑥 ∈ 𝐴) |
21 | 20 | ex 115 | . . 3 ⊢ (𝜑 → (∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
22 | 11 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
23 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) → ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) | |
24 | 22, 12, 23 | fodju0 7206 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) → 𝐴 = ∅) |
25 | 24 | ex 115 | . . 3 ⊢ (𝜑 → (∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o → 𝐴 = ∅)) |
26 | 21, 25 | orim12d 787 | . 2 ⊢ (𝜑 → ((∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅))) |
27 | 14, 26 | mpd 13 | 1 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ∅c0 3446 ifcif 3557 ↦ cmpt 4090 –onto→wfo 5252 ‘cfv 5254 (class class class)co 5918 1oc1o 6462 2oc2o 6463 ↑𝑚 cmap 6702 ⊔ cdju 7096 inlcinl 7104 Omnicomni 7193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-1o 6469 df-2o 6470 df-map 6704 df-dju 7097 df-inl 7106 df-inr 7107 df-omni 7194 |
This theorem is referenced by: fodjuomni 7208 |
Copyright terms: Public domain | W3C validator |