| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fodjuomnilemres | GIF version | ||
| Description: Lemma for fodjuomni 7312. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 29-Jul-2022.) |
| Ref | Expression |
|---|---|
| fodjuomni.o | ⊢ (𝜑 → 𝑂 ∈ Omni) |
| fodjuomni.fo | ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
| fodjuomni.p | ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
| Ref | Expression |
|---|---|
| fodjuomnilemres | ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 5625 | . . . . . 6 ⊢ (𝑓 = 𝑃 → (𝑓‘𝑤) = (𝑃‘𝑤)) | |
| 2 | 1 | eqeq1d 2238 | . . . . 5 ⊢ (𝑓 = 𝑃 → ((𝑓‘𝑤) = ∅ ↔ (𝑃‘𝑤) = ∅)) |
| 3 | 2 | rexbidv 2531 | . . . 4 ⊢ (𝑓 = 𝑃 → (∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ↔ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅)) |
| 4 | 1 | eqeq1d 2238 | . . . . 5 ⊢ (𝑓 = 𝑃 → ((𝑓‘𝑤) = 1o ↔ (𝑃‘𝑤) = 1o)) |
| 5 | 4 | ralbidv 2530 | . . . 4 ⊢ (𝑓 = 𝑃 → (∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o ↔ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o)) |
| 6 | 3, 5 | orbi12d 798 | . . 3 ⊢ (𝑓 = 𝑃 → ((∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o) ↔ (∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o))) |
| 7 | fodjuomni.o | . . . 4 ⊢ (𝜑 → 𝑂 ∈ Omni) | |
| 8 | isomnimap 7300 | . . . . 5 ⊢ (𝑂 ∈ Omni → (𝑂 ∈ Omni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝑂)(∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o))) | |
| 9 | 7, 8 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑂 ∈ Omni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝑂)(∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o))) |
| 10 | 7, 9 | mpbid 147 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ (2o ↑𝑚 𝑂)(∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o)) |
| 11 | fodjuomni.fo | . . . 4 ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) | |
| 12 | fodjuomni.p | . . . 4 ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) | |
| 13 | 11, 12, 7 | fodjuf 7308 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑂)) |
| 14 | 6, 10, 13 | rspcdva 2912 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o)) |
| 15 | 11 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
| 16 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) → ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) | |
| 17 | fveqeq2 5635 | . . . . . . 7 ⊢ (𝑤 = 𝑣 → ((𝑃‘𝑤) = ∅ ↔ (𝑃‘𝑣) = ∅)) | |
| 18 | 17 | cbvrexv 2766 | . . . . . 6 ⊢ (∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ ↔ ∃𝑣 ∈ 𝑂 (𝑃‘𝑣) = ∅) |
| 19 | 16, 18 | sylib 122 | . . . . 5 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) → ∃𝑣 ∈ 𝑂 (𝑃‘𝑣) = ∅) |
| 20 | 15, 12, 19 | fodjum 7309 | . . . 4 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) → ∃𝑥 𝑥 ∈ 𝐴) |
| 21 | 20 | ex 115 | . . 3 ⊢ (𝜑 → (∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
| 22 | 11 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
| 23 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) → ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) | |
| 24 | 22, 12, 23 | fodju0 7310 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) → 𝐴 = ∅) |
| 25 | 24 | ex 115 | . . 3 ⊢ (𝜑 → (∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o → 𝐴 = ∅)) |
| 26 | 21, 25 | orim12d 791 | . 2 ⊢ (𝜑 → ((∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅))) |
| 27 | 14, 26 | mpd 13 | 1 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 ∅c0 3491 ifcif 3602 ↦ cmpt 4144 –onto→wfo 5315 ‘cfv 5317 (class class class)co 6000 1oc1o 6553 2oc2o 6554 ↑𝑚 cmap 6793 ⊔ cdju 7200 inlcinl 7208 Omnicomni 7297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-1o 6560 df-2o 6561 df-map 6795 df-dju 7201 df-inl 7210 df-inr 7211 df-omni 7298 |
| This theorem is referenced by: fodjuomni 7312 |
| Copyright terms: Public domain | W3C validator |