Step | Hyp | Ref
| Expression |
1 | | fveq1 5516 |
. . . . . 6
β’ (π = π β (πβπ€) = (πβπ€)) |
2 | 1 | eqeq1d 2186 |
. . . . 5
β’ (π = π β ((πβπ€) = β
β (πβπ€) = β
)) |
3 | 2 | rexbidv 2478 |
. . . 4
β’ (π = π β (βπ€ β π (πβπ€) = β
β βπ€ β π (πβπ€) = β
)) |
4 | 1 | eqeq1d 2186 |
. . . . 5
β’ (π = π β ((πβπ€) = 1o β (πβπ€) = 1o)) |
5 | 4 | ralbidv 2477 |
. . . 4
β’ (π = π β (βπ€ β π (πβπ€) = 1o β βπ€ β π (πβπ€) = 1o)) |
6 | 3, 5 | orbi12d 793 |
. . 3
β’ (π = π β ((βπ€ β π (πβπ€) = β
β¨ βπ€ β π (πβπ€) = 1o) β (βπ€ β π (πβπ€) = β
β¨ βπ€ β π (πβπ€) = 1o))) |
7 | | fodjuomni.o |
. . . 4
β’ (π β π β Omni) |
8 | | isomnimap 7137 |
. . . . 5
β’ (π β Omni β (π β Omni β
βπ β
(2o βπ π)(βπ€ β π (πβπ€) = β
β¨ βπ€ β π (πβπ€) = 1o))) |
9 | 7, 8 | syl 14 |
. . . 4
β’ (π β (π β Omni β βπ β (2o
βπ π)(βπ€ β π (πβπ€) = β
β¨ βπ€ β π (πβπ€) = 1o))) |
10 | 7, 9 | mpbid 147 |
. . 3
β’ (π β βπ β (2o
βπ π)(βπ€ β π (πβπ€) = β
β¨ βπ€ β π (πβπ€) = 1o)) |
11 | | fodjuomni.fo |
. . . 4
β’ (π β πΉ:πβontoβ(π΄ β π΅)) |
12 | | fodjuomni.p |
. . . 4
β’ π = (π¦ β π β¦ if(βπ§ β π΄ (πΉβπ¦) = (inlβπ§), β
, 1o)) |
13 | 11, 12, 7 | fodjuf 7145 |
. . 3
β’ (π β π β (2o
βπ π)) |
14 | 6, 10, 13 | rspcdva 2848 |
. 2
β’ (π β (βπ€ β π (πβπ€) = β
β¨ βπ€ β π (πβπ€) = 1o)) |
15 | 11 | adantr 276 |
. . . . 5
β’ ((π β§ βπ€ β π (πβπ€) = β
) β πΉ:πβontoβ(π΄ β π΅)) |
16 | | simpr 110 |
. . . . . 6
β’ ((π β§ βπ€ β π (πβπ€) = β
) β βπ€ β π (πβπ€) = β
) |
17 | | fveqeq2 5526 |
. . . . . . 7
β’ (π€ = π£ β ((πβπ€) = β
β (πβπ£) = β
)) |
18 | 17 | cbvrexv 2706 |
. . . . . 6
β’
(βπ€ β
π (πβπ€) = β
β βπ£ β π (πβπ£) = β
) |
19 | 16, 18 | sylib 122 |
. . . . 5
β’ ((π β§ βπ€ β π (πβπ€) = β
) β βπ£ β π (πβπ£) = β
) |
20 | 15, 12, 19 | fodjum 7146 |
. . . 4
β’ ((π β§ βπ€ β π (πβπ€) = β
) β βπ₯ π₯ β π΄) |
21 | 20 | ex 115 |
. . 3
β’ (π β (βπ€ β π (πβπ€) = β
β βπ₯ π₯ β π΄)) |
22 | 11 | adantr 276 |
. . . . 5
β’ ((π β§ βπ€ β π (πβπ€) = 1o) β πΉ:πβontoβ(π΄ β π΅)) |
23 | | simpr 110 |
. . . . 5
β’ ((π β§ βπ€ β π (πβπ€) = 1o) β βπ€ β π (πβπ€) = 1o) |
24 | 22, 12, 23 | fodju0 7147 |
. . . 4
β’ ((π β§ βπ€ β π (πβπ€) = 1o) β π΄ = β
) |
25 | 24 | ex 115 |
. . 3
β’ (π β (βπ€ β π (πβπ€) = 1o β π΄ = β
)) |
26 | 21, 25 | orim12d 786 |
. 2
β’ (π β ((βπ€ β π (πβπ€) = β
β¨ βπ€ β π (πβπ€) = 1o) β (βπ₯ π₯ β π΄ β¨ π΄ = β
))) |
27 | 14, 26 | mpd 13 |
1
β’ (π β (βπ₯ π₯ β π΄ β¨ π΄ = β
)) |