| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fodjuomnilemres | GIF version | ||
| Description: Lemma for fodjuomni 7272. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 29-Jul-2022.) |
| Ref | Expression |
|---|---|
| fodjuomni.o | ⊢ (𝜑 → 𝑂 ∈ Omni) |
| fodjuomni.fo | ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
| fodjuomni.p | ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
| Ref | Expression |
|---|---|
| fodjuomnilemres | ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 5593 | . . . . . 6 ⊢ (𝑓 = 𝑃 → (𝑓‘𝑤) = (𝑃‘𝑤)) | |
| 2 | 1 | eqeq1d 2215 | . . . . 5 ⊢ (𝑓 = 𝑃 → ((𝑓‘𝑤) = ∅ ↔ (𝑃‘𝑤) = ∅)) |
| 3 | 2 | rexbidv 2508 | . . . 4 ⊢ (𝑓 = 𝑃 → (∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ↔ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅)) |
| 4 | 1 | eqeq1d 2215 | . . . . 5 ⊢ (𝑓 = 𝑃 → ((𝑓‘𝑤) = 1o ↔ (𝑃‘𝑤) = 1o)) |
| 5 | 4 | ralbidv 2507 | . . . 4 ⊢ (𝑓 = 𝑃 → (∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o ↔ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o)) |
| 6 | 3, 5 | orbi12d 795 | . . 3 ⊢ (𝑓 = 𝑃 → ((∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o) ↔ (∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o))) |
| 7 | fodjuomni.o | . . . 4 ⊢ (𝜑 → 𝑂 ∈ Omni) | |
| 8 | isomnimap 7260 | . . . . 5 ⊢ (𝑂 ∈ Omni → (𝑂 ∈ Omni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝑂)(∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o))) | |
| 9 | 7, 8 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑂 ∈ Omni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝑂)(∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o))) |
| 10 | 7, 9 | mpbid 147 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ (2o ↑𝑚 𝑂)(∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o)) |
| 11 | fodjuomni.fo | . . . 4 ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) | |
| 12 | fodjuomni.p | . . . 4 ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) | |
| 13 | 11, 12, 7 | fodjuf 7268 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑂)) |
| 14 | 6, 10, 13 | rspcdva 2886 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o)) |
| 15 | 11 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
| 16 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) → ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) | |
| 17 | fveqeq2 5603 | . . . . . . 7 ⊢ (𝑤 = 𝑣 → ((𝑃‘𝑤) = ∅ ↔ (𝑃‘𝑣) = ∅)) | |
| 18 | 17 | cbvrexv 2740 | . . . . . 6 ⊢ (∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ ↔ ∃𝑣 ∈ 𝑂 (𝑃‘𝑣) = ∅) |
| 19 | 16, 18 | sylib 122 | . . . . 5 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) → ∃𝑣 ∈ 𝑂 (𝑃‘𝑣) = ∅) |
| 20 | 15, 12, 19 | fodjum 7269 | . . . 4 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) → ∃𝑥 𝑥 ∈ 𝐴) |
| 21 | 20 | ex 115 | . . 3 ⊢ (𝜑 → (∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
| 22 | 11 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
| 23 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) → ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) | |
| 24 | 22, 12, 23 | fodju0 7270 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) → 𝐴 = ∅) |
| 25 | 24 | ex 115 | . . 3 ⊢ (𝜑 → (∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o → 𝐴 = ∅)) |
| 26 | 21, 25 | orim12d 788 | . 2 ⊢ (𝜑 → ((∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅))) |
| 27 | 14, 26 | mpd 13 | 1 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 ∅c0 3464 ifcif 3575 ↦ cmpt 4116 –onto→wfo 5283 ‘cfv 5285 (class class class)co 5962 1oc1o 6513 2oc2o 6514 ↑𝑚 cmap 6753 ⊔ cdju 7160 inlcinl 7168 Omnicomni 7257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-1o 6520 df-2o 6521 df-map 6755 df-dju 7161 df-inl 7170 df-inr 7171 df-omni 7258 |
| This theorem is referenced by: fodjuomni 7272 |
| Copyright terms: Public domain | W3C validator |