ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjuomnilemres GIF version

Theorem fodjuomnilemres 7249
Description: Lemma for fodjuomni 7250. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 29-Jul-2022.)
Hypotheses
Ref Expression
fodjuomni.o (𝜑𝑂 ∈ Omni)
fodjuomni.fo (𝜑𝐹:𝑂onto→(𝐴𝐵))
fodjuomni.p 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
Assertion
Ref Expression
fodjuomnilemres (𝜑 → (∃𝑥 𝑥𝐴𝐴 = ∅))
Distinct variable groups:   𝜑,𝑦,𝑧   𝑦,𝑂,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑥,𝐴,𝑧   𝑦,𝐴   𝑦,𝐹   𝑦,𝑃,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑦)   𝑃(𝑥)   𝐹(𝑥)   𝑂(𝑥)

Proof of Theorem fodjuomnilemres
Dummy variables 𝑣 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5574 . . . . . 6 (𝑓 = 𝑃 → (𝑓𝑤) = (𝑃𝑤))
21eqeq1d 2213 . . . . 5 (𝑓 = 𝑃 → ((𝑓𝑤) = ∅ ↔ (𝑃𝑤) = ∅))
32rexbidv 2506 . . . 4 (𝑓 = 𝑃 → (∃𝑤𝑂 (𝑓𝑤) = ∅ ↔ ∃𝑤𝑂 (𝑃𝑤) = ∅))
41eqeq1d 2213 . . . . 5 (𝑓 = 𝑃 → ((𝑓𝑤) = 1o ↔ (𝑃𝑤) = 1o))
54ralbidv 2505 . . . 4 (𝑓 = 𝑃 → (∀𝑤𝑂 (𝑓𝑤) = 1o ↔ ∀𝑤𝑂 (𝑃𝑤) = 1o))
63, 5orbi12d 794 . . 3 (𝑓 = 𝑃 → ((∃𝑤𝑂 (𝑓𝑤) = ∅ ∨ ∀𝑤𝑂 (𝑓𝑤) = 1o) ↔ (∃𝑤𝑂 (𝑃𝑤) = ∅ ∨ ∀𝑤𝑂 (𝑃𝑤) = 1o)))
7 fodjuomni.o . . . 4 (𝜑𝑂 ∈ Omni)
8 isomnimap 7238 . . . . 5 (𝑂 ∈ Omni → (𝑂 ∈ Omni ↔ ∀𝑓 ∈ (2o𝑚 𝑂)(∃𝑤𝑂 (𝑓𝑤) = ∅ ∨ ∀𝑤𝑂 (𝑓𝑤) = 1o)))
97, 8syl 14 . . . 4 (𝜑 → (𝑂 ∈ Omni ↔ ∀𝑓 ∈ (2o𝑚 𝑂)(∃𝑤𝑂 (𝑓𝑤) = ∅ ∨ ∀𝑤𝑂 (𝑓𝑤) = 1o)))
107, 9mpbid 147 . . 3 (𝜑 → ∀𝑓 ∈ (2o𝑚 𝑂)(∃𝑤𝑂 (𝑓𝑤) = ∅ ∨ ∀𝑤𝑂 (𝑓𝑤) = 1o))
11 fodjuomni.fo . . . 4 (𝜑𝐹:𝑂onto→(𝐴𝐵))
12 fodjuomni.p . . . 4 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
1311, 12, 7fodjuf 7246 . . 3 (𝜑𝑃 ∈ (2o𝑚 𝑂))
146, 10, 13rspcdva 2881 . 2 (𝜑 → (∃𝑤𝑂 (𝑃𝑤) = ∅ ∨ ∀𝑤𝑂 (𝑃𝑤) = 1o))
1511adantr 276 . . . . 5 ((𝜑 ∧ ∃𝑤𝑂 (𝑃𝑤) = ∅) → 𝐹:𝑂onto→(𝐴𝐵))
16 simpr 110 . . . . . 6 ((𝜑 ∧ ∃𝑤𝑂 (𝑃𝑤) = ∅) → ∃𝑤𝑂 (𝑃𝑤) = ∅)
17 fveqeq2 5584 . . . . . . 7 (𝑤 = 𝑣 → ((𝑃𝑤) = ∅ ↔ (𝑃𝑣) = ∅))
1817cbvrexv 2738 . . . . . 6 (∃𝑤𝑂 (𝑃𝑤) = ∅ ↔ ∃𝑣𝑂 (𝑃𝑣) = ∅)
1916, 18sylib 122 . . . . 5 ((𝜑 ∧ ∃𝑤𝑂 (𝑃𝑤) = ∅) → ∃𝑣𝑂 (𝑃𝑣) = ∅)
2015, 12, 19fodjum 7247 . . . 4 ((𝜑 ∧ ∃𝑤𝑂 (𝑃𝑤) = ∅) → ∃𝑥 𝑥𝐴)
2120ex 115 . . 3 (𝜑 → (∃𝑤𝑂 (𝑃𝑤) = ∅ → ∃𝑥 𝑥𝐴))
2211adantr 276 . . . . 5 ((𝜑 ∧ ∀𝑤𝑂 (𝑃𝑤) = 1o) → 𝐹:𝑂onto→(𝐴𝐵))
23 simpr 110 . . . . 5 ((𝜑 ∧ ∀𝑤𝑂 (𝑃𝑤) = 1o) → ∀𝑤𝑂 (𝑃𝑤) = 1o)
2422, 12, 23fodju0 7248 . . . 4 ((𝜑 ∧ ∀𝑤𝑂 (𝑃𝑤) = 1o) → 𝐴 = ∅)
2524ex 115 . . 3 (𝜑 → (∀𝑤𝑂 (𝑃𝑤) = 1o𝐴 = ∅))
2621, 25orim12d 787 . 2 (𝜑 → ((∃𝑤𝑂 (𝑃𝑤) = ∅ ∨ ∀𝑤𝑂 (𝑃𝑤) = 1o) → (∃𝑥 𝑥𝐴𝐴 = ∅)))
2714, 26mpd 13 1 (𝜑 → (∃𝑥 𝑥𝐴𝐴 = ∅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1372  wex 1514  wcel 2175  wral 2483  wrex 2484  c0 3459  ifcif 3570  cmpt 4104  ontowfo 5268  cfv 5270  (class class class)co 5943  1oc1o 6494  2oc2o 6495  𝑚 cmap 6734  cdju 7138  inlcinl 7146  Omnicomni 7235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-1o 6501  df-2o 6502  df-map 6736  df-dju 7139  df-inl 7148  df-inr 7149  df-omni 7236
This theorem is referenced by:  fodjuomni  7250
  Copyright terms: Public domain W3C validator