Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fodjuomnilemres | GIF version |
Description: Lemma for fodjuomni 7121. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 29-Jul-2022.) |
Ref | Expression |
---|---|
fodjuomni.o | ⊢ (𝜑 → 𝑂 ∈ Omni) |
fodjuomni.fo | ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
fodjuomni.p | ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
Ref | Expression |
---|---|
fodjuomnilemres | ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 5493 | . . . . . 6 ⊢ (𝑓 = 𝑃 → (𝑓‘𝑤) = (𝑃‘𝑤)) | |
2 | 1 | eqeq1d 2179 | . . . . 5 ⊢ (𝑓 = 𝑃 → ((𝑓‘𝑤) = ∅ ↔ (𝑃‘𝑤) = ∅)) |
3 | 2 | rexbidv 2471 | . . . 4 ⊢ (𝑓 = 𝑃 → (∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ↔ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅)) |
4 | 1 | eqeq1d 2179 | . . . . 5 ⊢ (𝑓 = 𝑃 → ((𝑓‘𝑤) = 1o ↔ (𝑃‘𝑤) = 1o)) |
5 | 4 | ralbidv 2470 | . . . 4 ⊢ (𝑓 = 𝑃 → (∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o ↔ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o)) |
6 | 3, 5 | orbi12d 788 | . . 3 ⊢ (𝑓 = 𝑃 → ((∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o) ↔ (∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o))) |
7 | fodjuomni.o | . . . 4 ⊢ (𝜑 → 𝑂 ∈ Omni) | |
8 | isomnimap 7109 | . . . . 5 ⊢ (𝑂 ∈ Omni → (𝑂 ∈ Omni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝑂)(∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o))) | |
9 | 7, 8 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑂 ∈ Omni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝑂)(∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o))) |
10 | 7, 9 | mpbid 146 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ (2o ↑𝑚 𝑂)(∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o)) |
11 | fodjuomni.fo | . . . 4 ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) | |
12 | fodjuomni.p | . . . 4 ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) | |
13 | 11, 12, 7 | fodjuf 7117 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑂)) |
14 | 6, 10, 13 | rspcdva 2839 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o)) |
15 | 11 | adantr 274 | . . . . 5 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
16 | simpr 109 | . . . . . 6 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) → ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) | |
17 | fveqeq2 5503 | . . . . . . 7 ⊢ (𝑤 = 𝑣 → ((𝑃‘𝑤) = ∅ ↔ (𝑃‘𝑣) = ∅)) | |
18 | 17 | cbvrexv 2697 | . . . . . 6 ⊢ (∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ ↔ ∃𝑣 ∈ 𝑂 (𝑃‘𝑣) = ∅) |
19 | 16, 18 | sylib 121 | . . . . 5 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) → ∃𝑣 ∈ 𝑂 (𝑃‘𝑣) = ∅) |
20 | 15, 12, 19 | fodjum 7118 | . . . 4 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) → ∃𝑥 𝑥 ∈ 𝐴) |
21 | 20 | ex 114 | . . 3 ⊢ (𝜑 → (∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
22 | 11 | adantr 274 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
23 | simpr 109 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) → ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) | |
24 | 22, 12, 23 | fodju0 7119 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) → 𝐴 = ∅) |
25 | 24 | ex 114 | . . 3 ⊢ (𝜑 → (∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o → 𝐴 = ∅)) |
26 | 21, 25 | orim12d 781 | . 2 ⊢ (𝜑 → ((∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅))) |
27 | 14, 26 | mpd 13 | 1 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 = wceq 1348 ∃wex 1485 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 ∅c0 3414 ifcif 3525 ↦ cmpt 4048 –onto→wfo 5194 ‘cfv 5196 (class class class)co 5850 1oc1o 6385 2oc2o 6386 ↑𝑚 cmap 6622 ⊔ cdju 7010 inlcinl 7018 Omnicomni 7106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-1o 6392 df-2o 6393 df-map 6624 df-dju 7011 df-inl 7020 df-inr 7021 df-omni 7107 |
This theorem is referenced by: fodjuomni 7121 |
Copyright terms: Public domain | W3C validator |