![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fodjuomnilemres | GIF version |
Description: Lemma for fodjuomni 7182. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 29-Jul-2022.) |
Ref | Expression |
---|---|
fodjuomni.o | ⊢ (𝜑 → 𝑂 ∈ Omni) |
fodjuomni.fo | ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
fodjuomni.p | ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
Ref | Expression |
---|---|
fodjuomnilemres | ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 5536 | . . . . . 6 ⊢ (𝑓 = 𝑃 → (𝑓‘𝑤) = (𝑃‘𝑤)) | |
2 | 1 | eqeq1d 2198 | . . . . 5 ⊢ (𝑓 = 𝑃 → ((𝑓‘𝑤) = ∅ ↔ (𝑃‘𝑤) = ∅)) |
3 | 2 | rexbidv 2491 | . . . 4 ⊢ (𝑓 = 𝑃 → (∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ↔ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅)) |
4 | 1 | eqeq1d 2198 | . . . . 5 ⊢ (𝑓 = 𝑃 → ((𝑓‘𝑤) = 1o ↔ (𝑃‘𝑤) = 1o)) |
5 | 4 | ralbidv 2490 | . . . 4 ⊢ (𝑓 = 𝑃 → (∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o ↔ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o)) |
6 | 3, 5 | orbi12d 794 | . . 3 ⊢ (𝑓 = 𝑃 → ((∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o) ↔ (∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o))) |
7 | fodjuomni.o | . . . 4 ⊢ (𝜑 → 𝑂 ∈ Omni) | |
8 | isomnimap 7170 | . . . . 5 ⊢ (𝑂 ∈ Omni → (𝑂 ∈ Omni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝑂)(∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o))) | |
9 | 7, 8 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑂 ∈ Omni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝑂)(∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o))) |
10 | 7, 9 | mpbid 147 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ (2o ↑𝑚 𝑂)(∃𝑤 ∈ 𝑂 (𝑓‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑓‘𝑤) = 1o)) |
11 | fodjuomni.fo | . . . 4 ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) | |
12 | fodjuomni.p | . . . 4 ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) | |
13 | 11, 12, 7 | fodjuf 7178 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑂)) |
14 | 6, 10, 13 | rspcdva 2861 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o)) |
15 | 11 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
16 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) → ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) | |
17 | fveqeq2 5546 | . . . . . . 7 ⊢ (𝑤 = 𝑣 → ((𝑃‘𝑤) = ∅ ↔ (𝑃‘𝑣) = ∅)) | |
18 | 17 | cbvrexv 2719 | . . . . . 6 ⊢ (∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ ↔ ∃𝑣 ∈ 𝑂 (𝑃‘𝑣) = ∅) |
19 | 16, 18 | sylib 122 | . . . . 5 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) → ∃𝑣 ∈ 𝑂 (𝑃‘𝑣) = ∅) |
20 | 15, 12, 19 | fodjum 7179 | . . . 4 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) → ∃𝑥 𝑥 ∈ 𝐴) |
21 | 20 | ex 115 | . . 3 ⊢ (𝜑 → (∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
22 | 11 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
23 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) → ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) | |
24 | 22, 12, 23 | fodju0 7180 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) → 𝐴 = ∅) |
25 | 24 | ex 115 | . . 3 ⊢ (𝜑 → (∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o → 𝐴 = ∅)) |
26 | 21, 25 | orim12d 787 | . 2 ⊢ (𝜑 → ((∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅ ∨ ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅))) |
27 | 14, 26 | mpd 13 | 1 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∃wex 1503 ∈ wcel 2160 ∀wral 2468 ∃wrex 2469 ∅c0 3437 ifcif 3549 ↦ cmpt 4082 –onto→wfo 5236 ‘cfv 5238 (class class class)co 5900 1oc1o 6438 2oc2o 6439 ↑𝑚 cmap 6678 ⊔ cdju 7070 inlcinl 7078 Omnicomni 7167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4139 ax-nul 4147 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-int 3863 df-br 4022 df-opab 4083 df-mpt 4084 df-tr 4120 df-id 4314 df-iord 4387 df-on 4389 df-suc 4392 df-iom 4611 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-ov 5903 df-oprab 5904 df-mpo 5905 df-1st 6169 df-2nd 6170 df-1o 6445 df-2o 6446 df-map 6680 df-dju 7071 df-inl 7080 df-inr 7081 df-omni 7168 |
This theorem is referenced by: fodjuomni 7182 |
Copyright terms: Public domain | W3C validator |