ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvid1 Unicode version

Theorem grpinvid1 13585
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinv.b  |-  B  =  ( Base `  G
)
grpinv.p  |-  .+  =  ( +g  `  G )
grpinv.u  |-  .0.  =  ( 0g `  G )
grpinv.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvid1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  =  Y  <-> 
( X  .+  Y
)  =  .0.  )
)

Proof of Theorem grpinvid1
StepHypRef Expression
1 oveq2 6009 . . . 4  |-  ( ( N `  X )  =  Y  ->  ( X  .+  ( N `  X ) )  =  ( X  .+  Y
) )
21adantl 277 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( N `  X
)  =  Y )  ->  ( X  .+  ( N `  X ) )  =  ( X 
.+  Y ) )
3 grpinv.b . . . . . 6  |-  B  =  ( Base `  G
)
4 grpinv.p . . . . . 6  |-  .+  =  ( +g  `  G )
5 grpinv.u . . . . . 6  |-  .0.  =  ( 0g `  G )
6 grpinv.n . . . . . 6  |-  N  =  ( invg `  G )
73, 4, 5, 6grprinv 13584 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( N `  X )
)  =  .0.  )
873adant3 1041 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( N `  X )
)  =  .0.  )
98adantr 276 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( N `  X
)  =  Y )  ->  ( X  .+  ( N `  X ) )  =  .0.  )
102, 9eqtr3d 2264 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( N `  X
)  =  Y )  ->  ( X  .+  Y )  =  .0.  )
11 oveq2 6009 . . . 4  |-  ( ( X  .+  Y )  =  .0.  ->  (
( N `  X
)  .+  ( X  .+  Y ) )  =  ( ( N `  X )  .+  .0.  ) )
1211adantl 277 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( X  .+  Y
)  =  .0.  )  ->  ( ( N `  X )  .+  ( X  .+  Y ) )  =  ( ( N `
 X )  .+  .0.  ) )
133, 4, 5, 6grplinv 13583 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X )  .+  X
)  =  .0.  )
1413oveq1d 6016 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( ( N `
 X )  .+  X )  .+  Y
)  =  (  .0.  .+  Y ) )
15143adant3 1041 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( N `
 X )  .+  X )  .+  Y
)  =  (  .0.  .+  Y ) )
163, 6grpinvcl 13581 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
1716adantrr 479 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( N `  X )  e.  B )
18 simprl 529 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  X  e.  B )
19 simprr 531 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  Y  e.  B )
2017, 18, 193jca 1201 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  (
( N `  X
)  e.  B  /\  X  e.  B  /\  Y  e.  B )
)
213, 4grpass 13542 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( ( N `  X )  e.  B  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( ( N `  X )  .+  X
)  .+  Y )  =  ( ( N `
 X )  .+  ( X  .+  Y ) ) )
2220, 21syldan 282 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  (
( ( N `  X )  .+  X
)  .+  Y )  =  ( ( N `
 X )  .+  ( X  .+  Y ) ) )
23223impb 1223 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( N `
 X )  .+  X )  .+  Y
)  =  ( ( N `  X ) 
.+  ( X  .+  Y ) ) )
2415, 23eqtr3d 2264 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  (  .0.  .+  Y
)  =  ( ( N `  X ) 
.+  ( X  .+  Y ) ) )
253, 4, 5grplid 13564 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  (  .0.  .+  Y
)  =  Y )
26253adant2 1040 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  (  .0.  .+  Y
)  =  Y )
2724, 26eqtr3d 2264 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  .+  ( X  .+  Y ) )  =  Y )
2827adantr 276 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( X  .+  Y
)  =  .0.  )  ->  ( ( N `  X )  .+  ( X  .+  Y ) )  =  Y )
293, 4, 5grprid 13565 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( N `  X )  e.  B )  -> 
( ( N `  X )  .+  .0.  )  =  ( N `  X ) )
3016, 29syldan 282 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X )  .+  .0.  )  =  ( N `  X ) )
31303adant3 1041 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  .+  .0.  )  =  ( N `  X ) )
3231adantr 276 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( X  .+  Y
)  =  .0.  )  ->  ( ( N `  X )  .+  .0.  )  =  ( N `  X ) )
3312, 28, 323eqtr3rd 2271 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( X  .+  Y
)  =  .0.  )  ->  ( N `  X
)  =  Y )
3410, 33impbida 598 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  =  Y  <-> 
( X  .+  Y
)  =  .0.  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   0gc0g 13289   Grpcgrp 13533   invgcminusg 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537
This theorem is referenced by:  grpinvid  13593  grpinvcnv  13601  grpinvadd  13611  subginv  13718  qusinv  13773  ghminv  13787  rngmneg1  13910  ringnegl  14014  lmodindp1  14392  cnfldneg  14537  zringinvg  14568
  Copyright terms: Public domain W3C validator