ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumpropd Unicode version

Theorem gsumpropd 13420
Description: The group sum depends only on the base set and additive operation. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
gsumpropd.f  |-  ( ph  ->  F  e.  V )
gsumpropd.g  |-  ( ph  ->  G  e.  W )
gsumpropd.h  |-  ( ph  ->  H  e.  X )
gsumpropd.b  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
gsumpropd.p  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
Assertion
Ref Expression
gsumpropd  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )

Proof of Theorem gsumpropd
Dummy variables  a  b  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2230 . . . . . . 7  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  G ) )
2 gsumpropd.b . . . . . . 7  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
3 gsumpropd.g . . . . . . 7  |-  ( ph  ->  G  e.  W )
4 gsumpropd.h . . . . . . 7  |-  ( ph  ->  H  e.  X )
5 gsumpropd.p . . . . . . . 8  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
65oveqdr 6028 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  ( Base `  G
)  /\  b  e.  ( Base `  G )
) )  ->  (
a ( +g  `  G
) b )  =  ( a ( +g  `  H ) b ) )
71, 2, 3, 4, 6grpidpropdg 13402 . . . . . 6  |-  ( ph  ->  ( 0g `  G
)  =  ( 0g
`  H ) )
87eqeq2d 2241 . . . . 5  |-  ( ph  ->  ( x  =  ( 0g `  G )  <-> 
x  =  ( 0g
`  H ) ) )
98anbi2d 464 . . . 4  |-  ( ph  ->  ( ( dom  F  =  (/)  /\  x  =  ( 0g `  G
) )  <->  ( dom  F  =  (/)  /\  x  =  ( 0g `  H ) ) ) )
105seqeq2d 10671 . . . . . . . . 9  |-  ( ph  ->  seq m ( ( +g  `  G ) ,  F )  =  seq m ( ( +g  `  H ) ,  F ) )
1110fveq1d 5628 . . . . . . . 8  |-  ( ph  ->  (  seq m ( ( +g  `  G
) ,  F ) `
 n )  =  (  seq m ( ( +g  `  H
) ,  F ) `
 n ) )
1211eqeq2d 2241 . . . . . . 7  |-  ( ph  ->  ( x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n )  <->  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) )
1312anbi2d 464 . . . . . 6  |-  ( ph  ->  ( ( dom  F  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  G
) ,  F ) `
 n ) )  <-> 
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
1413rexbidv 2531 . . . . 5  |-  ( ph  ->  ( E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) )  <->  E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
1514exbidv 1871 . . . 4  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )
)  <->  E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
169, 15orbi12d 798 . . 3  |-  ( ph  ->  ( ( ( dom 
F  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) ) )  <-> 
( ( dom  F  =  (/)  /\  x  =  ( 0g `  H
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ) )
1716iotabidv 5300 . 2  |-  ( ph  ->  ( iota x ( ( dom  F  =  (/)  /\  x  =  ( 0g `  G ) )  \/  E. m E. n  e.  ( ZZ>=
`  m ) ( dom  F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) ) ) )  =  ( iota
x ( ( dom 
F  =  (/)  /\  x  =  ( 0g `  H ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ) )
18 eqid 2229 . . 3  |-  ( Base `  G )  =  (
Base `  G )
19 eqid 2229 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
20 eqid 2229 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
21 gsumpropd.f . . 3  |-  ( ph  ->  F  e.  V )
22 eqidd 2230 . . 3  |-  ( ph  ->  dom  F  =  dom  F )
2318, 19, 20, 3, 21, 22igsumvalx 13417 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x ( ( dom  F  =  (/)  /\  x  =  ( 0g
`  G ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )
) ) ) )
24 eqid 2229 . . 3  |-  ( Base `  H )  =  (
Base `  H )
25 eqid 2229 . . 3  |-  ( 0g
`  H )  =  ( 0g `  H
)
26 eqid 2229 . . 3  |-  ( +g  `  H )  =  ( +g  `  H )
2724, 25, 26, 4, 21, 22igsumvalx 13417 . 2  |-  ( ph  ->  ( H  gsumg  F )  =  ( iota x ( ( dom  F  =  (/)  /\  x  =  ( 0g
`  H ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  H ) ,  F
) `  n )
) ) ) )
2817, 23, 273eqtr4d 2272 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200   E.wrex 2509   (/)c0 3491   dom cdm 4718   iotacio 5275   ` cfv 5317  (class class class)co 6000   ZZ>=cuz 9718   ...cfz 10200    seqcseq 10664   Basecbs 13027   +g cplusg 13105   0gc0g 13284    gsumg cgsu 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-recs 6449  df-frec 6535  df-neg 8316  df-inn 9107  df-z 9443  df-uz 9719  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-0g 13286  df-igsum 13287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator