ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumpropd Unicode version

Theorem gsumpropd 13339
Description: The group sum depends only on the base set and additive operation. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
gsumpropd.f  |-  ( ph  ->  F  e.  V )
gsumpropd.g  |-  ( ph  ->  G  e.  W )
gsumpropd.h  |-  ( ph  ->  H  e.  X )
gsumpropd.b  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
gsumpropd.p  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
Assertion
Ref Expression
gsumpropd  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )

Proof of Theorem gsumpropd
Dummy variables  a  b  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2208 . . . . . . 7  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  G ) )
2 gsumpropd.b . . . . . . 7  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
3 gsumpropd.g . . . . . . 7  |-  ( ph  ->  G  e.  W )
4 gsumpropd.h . . . . . . 7  |-  ( ph  ->  H  e.  X )
5 gsumpropd.p . . . . . . . 8  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
65oveqdr 5995 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  ( Base `  G
)  /\  b  e.  ( Base `  G )
) )  ->  (
a ( +g  `  G
) b )  =  ( a ( +g  `  H ) b ) )
71, 2, 3, 4, 6grpidpropdg 13321 . . . . . 6  |-  ( ph  ->  ( 0g `  G
)  =  ( 0g
`  H ) )
87eqeq2d 2219 . . . . 5  |-  ( ph  ->  ( x  =  ( 0g `  G )  <-> 
x  =  ( 0g
`  H ) ) )
98anbi2d 464 . . . 4  |-  ( ph  ->  ( ( dom  F  =  (/)  /\  x  =  ( 0g `  G
) )  <->  ( dom  F  =  (/)  /\  x  =  ( 0g `  H ) ) ) )
105seqeq2d 10636 . . . . . . . . 9  |-  ( ph  ->  seq m ( ( +g  `  G ) ,  F )  =  seq m ( ( +g  `  H ) ,  F ) )
1110fveq1d 5601 . . . . . . . 8  |-  ( ph  ->  (  seq m ( ( +g  `  G
) ,  F ) `
 n )  =  (  seq m ( ( +g  `  H
) ,  F ) `
 n ) )
1211eqeq2d 2219 . . . . . . 7  |-  ( ph  ->  ( x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n )  <->  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) )
1312anbi2d 464 . . . . . 6  |-  ( ph  ->  ( ( dom  F  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  G
) ,  F ) `
 n ) )  <-> 
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
1413rexbidv 2509 . . . . 5  |-  ( ph  ->  ( E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) )  <->  E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
1514exbidv 1849 . . . 4  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )
)  <->  E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
169, 15orbi12d 795 . . 3  |-  ( ph  ->  ( ( ( dom 
F  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) ) )  <-> 
( ( dom  F  =  (/)  /\  x  =  ( 0g `  H
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ) )
1716iotabidv 5273 . 2  |-  ( ph  ->  ( iota x ( ( dom  F  =  (/)  /\  x  =  ( 0g `  G ) )  \/  E. m E. n  e.  ( ZZ>=
`  m ) ( dom  F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) ) ) )  =  ( iota
x ( ( dom 
F  =  (/)  /\  x  =  ( 0g `  H ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ) )
18 eqid 2207 . . 3  |-  ( Base `  G )  =  (
Base `  G )
19 eqid 2207 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
20 eqid 2207 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
21 gsumpropd.f . . 3  |-  ( ph  ->  F  e.  V )
22 eqidd 2208 . . 3  |-  ( ph  ->  dom  F  =  dom  F )
2318, 19, 20, 3, 21, 22igsumvalx 13336 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x ( ( dom  F  =  (/)  /\  x  =  ( 0g
`  G ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )
) ) ) )
24 eqid 2207 . . 3  |-  ( Base `  H )  =  (
Base `  H )
25 eqid 2207 . . 3  |-  ( 0g
`  H )  =  ( 0g `  H
)
26 eqid 2207 . . 3  |-  ( +g  `  H )  =  ( +g  `  H )
2724, 25, 26, 4, 21, 22igsumvalx 13336 . 2  |-  ( ph  ->  ( H  gsumg  F )  =  ( iota x ( ( dom  F  =  (/)  /\  x  =  ( 0g
`  H ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  H ) ,  F
) `  n )
) ) ) )
2817, 23, 273eqtr4d 2250 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373   E.wex 1516    e. wcel 2178   E.wrex 2487   (/)c0 3468   dom cdm 4693   iotacio 5249   ` cfv 5290  (class class class)co 5967   ZZ>=cuz 9683   ...cfz 10165    seqcseq 10629   Basecbs 12947   +g cplusg 13024   0gc0g 13203    gsumg cgsu 13204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-recs 6414  df-frec 6500  df-neg 8281  df-inn 9072  df-z 9408  df-uz 9684  df-seqfrec 10630  df-ndx 12950  df-slot 12951  df-base 12953  df-0g 13205  df-igsum 13206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator