| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumpropd | Unicode version | ||
| Description: The group sum depends only on the base set and additive operation. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by Mario Carneiro, 18-Sep-2015.) |
| Ref | Expression |
|---|---|
| gsumpropd.f |
|
| gsumpropd.g |
|
| gsumpropd.h |
|
| gsumpropd.b |
|
| gsumpropd.p |
|
| Ref | Expression |
|---|---|
| gsumpropd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2208 |
. . . . . . 7
| |
| 2 | gsumpropd.b |
. . . . . . 7
| |
| 3 | gsumpropd.g |
. . . . . . 7
| |
| 4 | gsumpropd.h |
. . . . . . 7
| |
| 5 | gsumpropd.p |
. . . . . . . 8
| |
| 6 | 5 | oveqdr 5995 |
. . . . . . 7
|
| 7 | 1, 2, 3, 4, 6 | grpidpropdg 13321 |
. . . . . 6
|
| 8 | 7 | eqeq2d 2219 |
. . . . 5
|
| 9 | 8 | anbi2d 464 |
. . . 4
|
| 10 | 5 | seqeq2d 10636 |
. . . . . . . . 9
|
| 11 | 10 | fveq1d 5601 |
. . . . . . . 8
|
| 12 | 11 | eqeq2d 2219 |
. . . . . . 7
|
| 13 | 12 | anbi2d 464 |
. . . . . 6
|
| 14 | 13 | rexbidv 2509 |
. . . . 5
|
| 15 | 14 | exbidv 1849 |
. . . 4
|
| 16 | 9, 15 | orbi12d 795 |
. . 3
|
| 17 | 16 | iotabidv 5273 |
. 2
|
| 18 | eqid 2207 |
. . 3
| |
| 19 | eqid 2207 |
. . 3
| |
| 20 | eqid 2207 |
. . 3
| |
| 21 | gsumpropd.f |
. . 3
| |
| 22 | eqidd 2208 |
. . 3
| |
| 23 | 18, 19, 20, 3, 21, 22 | igsumvalx 13336 |
. 2
|
| 24 | eqid 2207 |
. . 3
| |
| 25 | eqid 2207 |
. . 3
| |
| 26 | eqid 2207 |
. . 3
| |
| 27 | 24, 25, 26, 4, 21, 22 | igsumvalx 13336 |
. 2
|
| 28 | 17, 23, 27 | 3eqtr4d 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-recs 6414 df-frec 6500 df-neg 8281 df-inn 9072 df-z 9408 df-uz 9684 df-seqfrec 10630 df-ndx 12950 df-slot 12951 df-base 12953 df-0g 13205 df-igsum 13206 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |