ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumpropd Unicode version

Theorem gsumpropd 13035
Description: The group sum depends only on the base set and additive operation. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
gsumpropd.f  |-  ( ph  ->  F  e.  V )
gsumpropd.g  |-  ( ph  ->  G  e.  W )
gsumpropd.h  |-  ( ph  ->  H  e.  X )
gsumpropd.b  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
gsumpropd.p  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
Assertion
Ref Expression
gsumpropd  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )

Proof of Theorem gsumpropd
Dummy variables  a  b  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2197 . . . . . . 7  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  G ) )
2 gsumpropd.b . . . . . . 7  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
3 gsumpropd.g . . . . . . 7  |-  ( ph  ->  G  e.  W )
4 gsumpropd.h . . . . . . 7  |-  ( ph  ->  H  e.  X )
5 gsumpropd.p . . . . . . . 8  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
65oveqdr 5950 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  ( Base `  G
)  /\  b  e.  ( Base `  G )
) )  ->  (
a ( +g  `  G
) b )  =  ( a ( +g  `  H ) b ) )
71, 2, 3, 4, 6grpidpropdg 13017 . . . . . 6  |-  ( ph  ->  ( 0g `  G
)  =  ( 0g
`  H ) )
87eqeq2d 2208 . . . . 5  |-  ( ph  ->  ( x  =  ( 0g `  G )  <-> 
x  =  ( 0g
`  H ) ) )
98anbi2d 464 . . . 4  |-  ( ph  ->  ( ( dom  F  =  (/)  /\  x  =  ( 0g `  G
) )  <->  ( dom  F  =  (/)  /\  x  =  ( 0g `  H ) ) ) )
105seqeq2d 10546 . . . . . . . . 9  |-  ( ph  ->  seq m ( ( +g  `  G ) ,  F )  =  seq m ( ( +g  `  H ) ,  F ) )
1110fveq1d 5560 . . . . . . . 8  |-  ( ph  ->  (  seq m ( ( +g  `  G
) ,  F ) `
 n )  =  (  seq m ( ( +g  `  H
) ,  F ) `
 n ) )
1211eqeq2d 2208 . . . . . . 7  |-  ( ph  ->  ( x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n )  <->  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) )
1312anbi2d 464 . . . . . 6  |-  ( ph  ->  ( ( dom  F  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  G
) ,  F ) `
 n ) )  <-> 
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
1413rexbidv 2498 . . . . 5  |-  ( ph  ->  ( E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) )  <->  E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
1514exbidv 1839 . . . 4  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )
)  <->  E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
169, 15orbi12d 794 . . 3  |-  ( ph  ->  ( ( ( dom 
F  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) ) )  <-> 
( ( dom  F  =  (/)  /\  x  =  ( 0g `  H
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ) )
1716iotabidv 5241 . 2  |-  ( ph  ->  ( iota x ( ( dom  F  =  (/)  /\  x  =  ( 0g `  G ) )  \/  E. m E. n  e.  ( ZZ>=
`  m ) ( dom  F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) ) ) )  =  ( iota
x ( ( dom 
F  =  (/)  /\  x  =  ( 0g `  H ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ) )
18 eqid 2196 . . 3  |-  ( Base `  G )  =  (
Base `  G )
19 eqid 2196 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
20 eqid 2196 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
21 gsumpropd.f . . 3  |-  ( ph  ->  F  e.  V )
22 eqidd 2197 . . 3  |-  ( ph  ->  dom  F  =  dom  F )
2318, 19, 20, 3, 21, 22igsumvalx 13032 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x ( ( dom  F  =  (/)  /\  x  =  ( 0g
`  G ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )
) ) ) )
24 eqid 2196 . . 3  |-  ( Base `  H )  =  (
Base `  H )
25 eqid 2196 . . 3  |-  ( 0g
`  H )  =  ( 0g `  H
)
26 eqid 2196 . . 3  |-  ( +g  `  H )  =  ( +g  `  H )
2724, 25, 26, 4, 21, 22igsumvalx 13032 . 2  |-  ( ph  ->  ( H  gsumg  F )  =  ( iota x ( ( dom  F  =  (/)  /\  x  =  ( 0g
`  H ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  H ) ,  F
) `  n )
) ) ) )
2817, 23, 273eqtr4d 2239 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364   E.wex 1506    e. wcel 2167   E.wrex 2476   (/)c0 3450   dom cdm 4663   iotacio 5217   ` cfv 5258  (class class class)co 5922   ZZ>=cuz 9601   ...cfz 10083    seqcseq 10539   Basecbs 12678   +g cplusg 12755   0gc0g 12927    gsumg cgsu 12928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-recs 6363  df-frec 6449  df-neg 8200  df-inn 8991  df-z 9327  df-uz 9602  df-seqfrec 10540  df-ndx 12681  df-slot 12682  df-base 12684  df-0g 12929  df-igsum 12930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator