ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumpropd Unicode version

Theorem gsumpropd 12975
Description: The group sum depends only on the base set and additive operation. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
gsumpropd.f  |-  ( ph  ->  F  e.  V )
gsumpropd.g  |-  ( ph  ->  G  e.  W )
gsumpropd.h  |-  ( ph  ->  H  e.  X )
gsumpropd.b  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
gsumpropd.p  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
Assertion
Ref Expression
gsumpropd  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )

Proof of Theorem gsumpropd
Dummy variables  a  b  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2194 . . . . . . 7  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  G ) )
2 gsumpropd.b . . . . . . 7  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
3 gsumpropd.g . . . . . . 7  |-  ( ph  ->  G  e.  W )
4 gsumpropd.h . . . . . . 7  |-  ( ph  ->  H  e.  X )
5 gsumpropd.p . . . . . . . 8  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
65oveqdr 5946 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  ( Base `  G
)  /\  b  e.  ( Base `  G )
) )  ->  (
a ( +g  `  G
) b )  =  ( a ( +g  `  H ) b ) )
71, 2, 3, 4, 6grpidpropdg 12957 . . . . . 6  |-  ( ph  ->  ( 0g `  G
)  =  ( 0g
`  H ) )
87eqeq2d 2205 . . . . 5  |-  ( ph  ->  ( x  =  ( 0g `  G )  <-> 
x  =  ( 0g
`  H ) ) )
98anbi2d 464 . . . 4  |-  ( ph  ->  ( ( dom  F  =  (/)  /\  x  =  ( 0g `  G
) )  <->  ( dom  F  =  (/)  /\  x  =  ( 0g `  H ) ) ) )
105seqeq2d 10525 . . . . . . . . 9  |-  ( ph  ->  seq m ( ( +g  `  G ) ,  F )  =  seq m ( ( +g  `  H ) ,  F ) )
1110fveq1d 5556 . . . . . . . 8  |-  ( ph  ->  (  seq m ( ( +g  `  G
) ,  F ) `
 n )  =  (  seq m ( ( +g  `  H
) ,  F ) `
 n ) )
1211eqeq2d 2205 . . . . . . 7  |-  ( ph  ->  ( x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n )  <->  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) )
1312anbi2d 464 . . . . . 6  |-  ( ph  ->  ( ( dom  F  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  G
) ,  F ) `
 n ) )  <-> 
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
1413rexbidv 2495 . . . . 5  |-  ( ph  ->  ( E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) )  <->  E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
1514exbidv 1836 . . . 4  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )
)  <->  E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
169, 15orbi12d 794 . . 3  |-  ( ph  ->  ( ( ( dom 
F  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) ) )  <-> 
( ( dom  F  =  (/)  /\  x  =  ( 0g `  H
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ) )
1716iotabidv 5237 . 2  |-  ( ph  ->  ( iota x ( ( dom  F  =  (/)  /\  x  =  ( 0g `  G ) )  \/  E. m E. n  e.  ( ZZ>=
`  m ) ( dom  F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) ) ) )  =  ( iota
x ( ( dom 
F  =  (/)  /\  x  =  ( 0g `  H ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ) )
18 eqid 2193 . . 3  |-  ( Base `  G )  =  (
Base `  G )
19 eqid 2193 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
20 eqid 2193 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
21 gsumpropd.f . . 3  |-  ( ph  ->  F  e.  V )
22 eqidd 2194 . . 3  |-  ( ph  ->  dom  F  =  dom  F )
2318, 19, 20, 3, 21, 22igsumvalx 12972 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x ( ( dom  F  =  (/)  /\  x  =  ( 0g
`  G ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )
) ) ) )
24 eqid 2193 . . 3  |-  ( Base `  H )  =  (
Base `  H )
25 eqid 2193 . . 3  |-  ( 0g
`  H )  =  ( 0g `  H
)
26 eqid 2193 . . 3  |-  ( +g  `  H )  =  ( +g  `  H )
2724, 25, 26, 4, 21, 22igsumvalx 12972 . 2  |-  ( ph  ->  ( H  gsumg  F )  =  ( iota x ( ( dom  F  =  (/)  /\  x  =  ( 0g
`  H ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  H ) ,  F
) `  n )
) ) ) )
2817, 23, 273eqtr4d 2236 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364   E.wex 1503    e. wcel 2164   E.wrex 2473   (/)c0 3446   dom cdm 4659   iotacio 5213   ` cfv 5254  (class class class)co 5918   ZZ>=cuz 9592   ...cfz 10074    seqcseq 10518   Basecbs 12618   +g cplusg 12695   0gc0g 12867    gsumg cgsu 12868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444  df-neg 8193  df-inn 8983  df-z 9318  df-uz 9593  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-0g 12869  df-igsum 12870
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator