ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumpropd2 Unicode version

Theorem gsumpropd2 12979
Description: A stronger version of gsumpropd 12978, working for magma, where only the closure of the addition operation on a common base is required, see gsummgmpropd 12980. (Contributed by Thierry Arnoux, 28-Jun-2017.)
Hypotheses
Ref Expression
gsumpropd2.f  |-  ( ph  ->  F  e.  V )
gsumpropd2.g  |-  ( ph  ->  G  e.  W )
gsumpropd2.h  |-  ( ph  ->  H  e.  X )
gsumpropd2.b  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
gsumpropd2.c  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  e.  ( Base `  G
) )
gsumpropd2.e  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  =  ( s ( +g  `  H ) t ) )
gsumpropd2.n  |-  ( ph  ->  Fun  F )
gsumpropd2.r  |-  ( ph  ->  ran  F  C_  ( Base `  G ) )
Assertion
Ref Expression
gsumpropd2  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Distinct variable groups:    F, s, t    G, s, t    H, s, t    ph, s, t
Allowed substitution hints:    V( t, s)    W( t, s)    X( t, s)

Proof of Theorem gsumpropd2
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2194 . . . . . . 7  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  G ) )
2 gsumpropd2.b . . . . . . 7  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
3 gsumpropd2.g . . . . . . 7  |-  ( ph  ->  G  e.  W )
4 gsumpropd2.h . . . . . . 7  |-  ( ph  ->  H  e.  X )
5 gsumpropd2.e . . . . . . 7  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  =  ( s ( +g  `  H ) t ) )
61, 2, 3, 4, 5grpidpropdg 12960 . . . . . 6  |-  ( ph  ->  ( 0g `  G
)  =  ( 0g
`  H ) )
76eqeq2d 2205 . . . . 5  |-  ( ph  ->  ( x  =  ( 0g `  G )  <-> 
x  =  ( 0g
`  H ) ) )
87anbi2d 464 . . . 4  |-  ( ph  ->  ( ( dom  F  =  (/)  /\  x  =  ( 0g `  G
) )  <->  ( dom  F  =  (/)  /\  x  =  ( 0g `  H ) ) ) )
9 simprl 529 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  ->  n  e.  ( ZZ>= `  m )
)
10 gsumpropd2.r . . . . . . . . . . . 12  |-  ( ph  ->  ran  F  C_  ( Base `  G ) )
1110ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  /\  s  e.  ( m ... n ) )  ->  ran  F  C_  ( Base `  G )
)
12 gsumpropd2.n . . . . . . . . . . . . 13  |-  ( ph  ->  Fun  F )
1312ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  /\  s  e.  ( m ... n ) )  ->  Fun  F )
14 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  /\  s  e.  ( m ... n ) )  ->  s  e.  ( m ... n
) )
15 simplrr 536 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  /\  s  e.  ( m ... n ) )  ->  dom  F  =  ( m ... n
) )
1614, 15eleqtrrd 2273 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  /\  s  e.  ( m ... n ) )  ->  s  e.  dom  F )
17 fvelrn 5690 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  s  e.  dom  F )  -> 
( F `  s
)  e.  ran  F
)
1813, 16, 17syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  /\  s  e.  ( m ... n ) )  ->  ( F `  s )  e.  ran  F )
1911, 18sseldd 3181 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  /\  s  e.  ( m ... n ) )  ->  ( F `  s )  e.  (
Base `  G )
)
20 gsumpropd2.f . . . . . . . . . . 11  |-  ( ph  ->  F  e.  V )
2120adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  ->  F  e.  V )
22 plusgslid 12733 . . . . . . . . . . . . 13  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
2322slotex 12648 . . . . . . . . . . . 12  |-  ( G  e.  W  ->  ( +g  `  G )  e. 
_V )
243, 23syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ( +g  `  G
)  e.  _V )
2524adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  ->  ( +g  `  G )  e. 
_V )
2622slotex 12648 . . . . . . . . . . . 12  |-  ( H  e.  X  ->  ( +g  `  H )  e. 
_V )
274, 26syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ( +g  `  H
)  e.  _V )
2827adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  ->  ( +g  `  H )  e. 
_V )
29 gsumpropd2.c . . . . . . . . . . 11  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  e.  ( Base `  G
) )
3029adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  e.  ( Base `  G
) )
315adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  =  ( s ( +g  `  H ) t ) )
329, 19, 21, 25, 28, 30, 31seqfeq4g 10605 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  ->  (  seq m ( ( +g  `  G ) ,  F
) `  n )  =  (  seq m
( ( +g  `  H
) ,  F ) `
 n ) )
3332eqeq2d 2205 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  ->  (
x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )  <->  x  =  (  seq m
( ( +g  `  H
) ,  F ) `
 n ) ) )
3433anassrs 400 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  dom  F  =  ( m ... n
) )  ->  (
x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )  <->  x  =  (  seq m
( ( +g  `  H
) ,  F ) `
 n ) ) )
3534pm5.32da 452 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  m )
)  ->  ( ( dom  F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )
)  <->  ( dom  F  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  H
) ,  F ) `
 n ) ) ) )
3635rexbidva 2491 . . . . 5  |-  ( ph  ->  ( E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) )  <->  E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
3736exbidv 1836 . . . 4  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )
)  <->  E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
388, 37orbi12d 794 . . 3  |-  ( ph  ->  ( ( ( dom 
F  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) ) )  <-> 
( ( dom  F  =  (/)  /\  x  =  ( 0g `  H
) )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( dom  F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ) )
3938iotabidv 5238 . 2  |-  ( ph  ->  ( iota x ( ( dom  F  =  (/)  /\  x  =  ( 0g `  G ) )  \/  E. m E. n  e.  ( ZZ>=
`  m ) ( dom  F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) ) ) )  =  ( iota
x ( ( dom 
F  =  (/)  /\  x  =  ( 0g `  H ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ) )
40 eqid 2193 . . 3  |-  ( Base `  G )  =  (
Base `  G )
41 eqid 2193 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
42 eqid 2193 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
43 eqidd 2194 . . 3  |-  ( ph  ->  dom  F  =  dom  F )
4440, 41, 42, 3, 20, 43igsumvalx 12975 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x ( ( dom  F  =  (/)  /\  x  =  ( 0g
`  G ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )
) ) ) )
45 eqid 2193 . . 3  |-  ( Base `  H )  =  (
Base `  H )
46 eqid 2193 . . 3  |-  ( 0g
`  H )  =  ( 0g `  H
)
47 eqid 2193 . . 3  |-  ( +g  `  H )  =  ( +g  `  H )
4845, 46, 47, 4, 20, 43igsumvalx 12975 . 2  |-  ( ph  ->  ( H  gsumg  F )  =  ( iota x ( ( dom  F  =  (/)  /\  x  =  ( 0g
`  H ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  H ) ,  F
) `  n )
) ) ) )
4939, 44, 483eqtr4d 2236 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364   E.wex 1503    e. wcel 2164   E.wrex 2473   _Vcvv 2760    C_ wss 3154   (/)c0 3447   dom cdm 4660   ran crn 4661   iotacio 5214   Fun wfun 5249   ` cfv 5255  (class class class)co 5919   ZZ>=cuz 9595   ...cfz 10077    seqcseq 10521   Basecbs 12621   +g cplusg 12698   0gc0g 12870    gsumg cgsu 12871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-igsum 12873
This theorem is referenced by:  gsummgmpropd  12980
  Copyright terms: Public domain W3C validator