| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumpropd2 | Unicode version | ||
| Description: A stronger version of gsumpropd 13339, working for magma, where only the closure of the addition operation on a common base is required, see gsummgmpropd 13341. (Contributed by Thierry Arnoux, 28-Jun-2017.) |
| Ref | Expression |
|---|---|
| gsumpropd2.f |
|
| gsumpropd2.g |
|
| gsumpropd2.h |
|
| gsumpropd2.b |
|
| gsumpropd2.c |
|
| gsumpropd2.e |
|
| gsumpropd2.n |
|
| gsumpropd2.r |
|
| Ref | Expression |
|---|---|
| gsumpropd2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2208 |
. . . . . . 7
| |
| 2 | gsumpropd2.b |
. . . . . . 7
| |
| 3 | gsumpropd2.g |
. . . . . . 7
| |
| 4 | gsumpropd2.h |
. . . . . . 7
| |
| 5 | gsumpropd2.e |
. . . . . . 7
| |
| 6 | 1, 2, 3, 4, 5 | grpidpropdg 13321 |
. . . . . 6
|
| 7 | 6 | eqeq2d 2219 |
. . . . 5
|
| 8 | 7 | anbi2d 464 |
. . . 4
|
| 9 | simprl 529 |
. . . . . . . . . 10
| |
| 10 | gsumpropd2.r |
. . . . . . . . . . . 12
| |
| 11 | 10 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 12 | gsumpropd2.n |
. . . . . . . . . . . . 13
| |
| 13 | 12 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 14 | simpr 110 |
. . . . . . . . . . . . 13
| |
| 15 | simplrr 536 |
. . . . . . . . . . . . 13
| |
| 16 | 14, 15 | eleqtrrd 2287 |
. . . . . . . . . . . 12
|
| 17 | fvelrn 5734 |
. . . . . . . . . . . 12
| |
| 18 | 13, 16, 17 | syl2anc 411 |
. . . . . . . . . . 11
|
| 19 | 11, 18 | sseldd 3202 |
. . . . . . . . . 10
|
| 20 | gsumpropd2.f |
. . . . . . . . . . 11
| |
| 21 | 20 | adantr 276 |
. . . . . . . . . 10
|
| 22 | plusgslid 13059 |
. . . . . . . . . . . . 13
| |
| 23 | 22 | slotex 12974 |
. . . . . . . . . . . 12
|
| 24 | 3, 23 | syl 14 |
. . . . . . . . . . 11
|
| 25 | 24 | adantr 276 |
. . . . . . . . . 10
|
| 26 | 22 | slotex 12974 |
. . . . . . . . . . . 12
|
| 27 | 4, 26 | syl 14 |
. . . . . . . . . . 11
|
| 28 | 27 | adantr 276 |
. . . . . . . . . 10
|
| 29 | gsumpropd2.c |
. . . . . . . . . . 11
| |
| 30 | 29 | adantlr 477 |
. . . . . . . . . 10
|
| 31 | 5 | adantlr 477 |
. . . . . . . . . 10
|
| 32 | 9, 19, 21, 25, 28, 30, 31 | seqfeq4g 10713 |
. . . . . . . . 9
|
| 33 | 32 | eqeq2d 2219 |
. . . . . . . 8
|
| 34 | 33 | anassrs 400 |
. . . . . . 7
|
| 35 | 34 | pm5.32da 452 |
. . . . . 6
|
| 36 | 35 | rexbidva 2505 |
. . . . 5
|
| 37 | 36 | exbidv 1849 |
. . . 4
|
| 38 | 8, 37 | orbi12d 795 |
. . 3
|
| 39 | 38 | iotabidv 5273 |
. 2
|
| 40 | eqid 2207 |
. . 3
| |
| 41 | eqid 2207 |
. . 3
| |
| 42 | eqid 2207 |
. . 3
| |
| 43 | eqidd 2208 |
. . 3
| |
| 44 | 40, 41, 42, 3, 20, 43 | igsumvalx 13336 |
. 2
|
| 45 | eqid 2207 |
. . 3
| |
| 46 | eqid 2207 |
. . 3
| |
| 47 | eqid 2207 |
. . 3
| |
| 48 | 45, 46, 47, 4, 20, 43 | igsumvalx 13336 |
. 2
|
| 49 | 39, 44, 48 | 3eqtr4d 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-2 9130 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-0g 13205 df-igsum 13206 |
| This theorem is referenced by: gsummgmpropd 13341 |
| Copyright terms: Public domain | W3C validator |