ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumpropd GIF version

Theorem gsumpropd 13274
Description: The group sum depends only on the base set and additive operation. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
gsumpropd.f (𝜑𝐹𝑉)
gsumpropd.g (𝜑𝐺𝑊)
gsumpropd.h (𝜑𝐻𝑋)
gsumpropd.b (𝜑 → (Base‘𝐺) = (Base‘𝐻))
gsumpropd.p (𝜑 → (+g𝐺) = (+g𝐻))
Assertion
Ref Expression
gsumpropd (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))

Proof of Theorem gsumpropd
Dummy variables 𝑎 𝑏 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2207 . . . . . . 7 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
2 gsumpropd.b . . . . . . 7 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
3 gsumpropd.g . . . . . . 7 (𝜑𝐺𝑊)
4 gsumpropd.h . . . . . . 7 (𝜑𝐻𝑋)
5 gsumpropd.p . . . . . . . 8 (𝜑 → (+g𝐺) = (+g𝐻))
65oveqdr 5982 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) = (𝑎(+g𝐻)𝑏))
71, 2, 3, 4, 6grpidpropdg 13256 . . . . . 6 (𝜑 → (0g𝐺) = (0g𝐻))
87eqeq2d 2218 . . . . 5 (𝜑 → (𝑥 = (0g𝐺) ↔ 𝑥 = (0g𝐻)))
98anbi2d 464 . . . 4 (𝜑 → ((dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐺)) ↔ (dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐻))))
105seqeq2d 10612 . . . . . . . . 9 (𝜑 → seq𝑚((+g𝐺), 𝐹) = seq𝑚((+g𝐻), 𝐹))
1110fveq1d 5588 . . . . . . . 8 (𝜑 → (seq𝑚((+g𝐺), 𝐹)‘𝑛) = (seq𝑚((+g𝐻), 𝐹)‘𝑛))
1211eqeq2d 2218 . . . . . . 7 (𝜑 → (𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))
1312anbi2d 464 . . . . . 6 (𝜑 → ((dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ (dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
1413rexbidv 2508 . . . . 5 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
1514exbidv 1849 . . . 4 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
169, 15orbi12d 795 . . 3 (𝜑 → (((dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))) ↔ ((dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐻)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))))
1716iotabidv 5260 . 2 (𝜑 → (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)))) = (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐻)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))))
18 eqid 2206 . . 3 (Base‘𝐺) = (Base‘𝐺)
19 eqid 2206 . . 3 (0g𝐺) = (0g𝐺)
20 eqid 2206 . . 3 (+g𝐺) = (+g𝐺)
21 gsumpropd.f . . 3 (𝜑𝐹𝑉)
22 eqidd 2207 . . 3 (𝜑 → dom 𝐹 = dom 𝐹)
2318, 19, 20, 3, 21, 22igsumvalx 13271 . 2 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)))))
24 eqid 2206 . . 3 (Base‘𝐻) = (Base‘𝐻)
25 eqid 2206 . . 3 (0g𝐻) = (0g𝐻)
26 eqid 2206 . . 3 (+g𝐻) = (+g𝐻)
2724, 25, 26, 4, 21, 22igsumvalx 13271 . 2 (𝜑 → (𝐻 Σg 𝐹) = (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐻)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))))
2817, 23, 273eqtr4d 2249 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710   = wceq 1373  wex 1516  wcel 2177  wrex 2486  c0 3462  dom cdm 4680  cio 5236  cfv 5277  (class class class)co 5954  cuz 9661  ...cfz 10143  seqcseq 10605  Basecbs 12882  +gcplusg 12959  0gc0g 13138   Σg cgsu 13139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1re 8032  ax-addrcl 8035
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-recs 6401  df-frec 6487  df-neg 8259  df-inn 9050  df-z 9386  df-uz 9662  df-seqfrec 10606  df-ndx 12885  df-slot 12886  df-base 12888  df-0g 13140  df-igsum 13141
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator