| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2197 |
. . . . . . 7
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) |
| 2 | | gsumpropd.b |
. . . . . . 7
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
| 3 | | gsumpropd.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| 4 | | gsumpropd.h |
. . . . . . 7
⊢ (𝜑 → 𝐻 ∈ 𝑋) |
| 5 | | gsumpropd.p |
. . . . . . . 8
⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) |
| 6 | 5 | oveqdr 5950 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g‘𝐺)𝑏) = (𝑎(+g‘𝐻)𝑏)) |
| 7 | 1, 2, 3, 4, 6 | grpidpropdg 13017 |
. . . . . 6
⊢ (𝜑 → (0g‘𝐺) = (0g‘𝐻)) |
| 8 | 7 | eqeq2d 2208 |
. . . . 5
⊢ (𝜑 → (𝑥 = (0g‘𝐺) ↔ 𝑥 = (0g‘𝐻))) |
| 9 | 8 | anbi2d 464 |
. . . 4
⊢ (𝜑 → ((dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐺)) ↔ (dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐻)))) |
| 10 | 5 | seqeq2d 10546 |
. . . . . . . . 9
⊢ (𝜑 → seq𝑚((+g‘𝐺), 𝐹) = seq𝑚((+g‘𝐻), 𝐹)) |
| 11 | 10 | fveq1d 5560 |
. . . . . . . 8
⊢ (𝜑 → (seq𝑚((+g‘𝐺), 𝐹)‘𝑛) = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)) |
| 12 | 11 | eqeq2d 2208 |
. . . . . . 7
⊢ (𝜑 → (𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))) |
| 13 | 12 | anbi2d 464 |
. . . . . 6
⊢ (𝜑 → ((dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛)) ↔ (dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) |
| 14 | 13 | rexbidv 2498 |
. . . . 5
⊢ (𝜑 → (∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) |
| 15 | 14 | exbidv 1839 |
. . . 4
⊢ (𝜑 → (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛)) ↔ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) |
| 16 | 9, 15 | orbi12d 794 |
. . 3
⊢ (𝜑 → (((dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐺)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛))) ↔ ((dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐻)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))))) |
| 17 | 16 | iotabidv 5241 |
. 2
⊢ (𝜑 → (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐺)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛)))) = (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐻)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))))) |
| 18 | | eqid 2196 |
. . 3
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 19 | | eqid 2196 |
. . 3
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 20 | | eqid 2196 |
. . 3
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 21 | | gsumpropd.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| 22 | | eqidd 2197 |
. . 3
⊢ (𝜑 → dom 𝐹 = dom 𝐹) |
| 23 | 18, 19, 20, 3, 21, 22 | igsumvalx 13032 |
. 2
⊢ (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐺)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛))))) |
| 24 | | eqid 2196 |
. . 3
⊢
(Base‘𝐻) =
(Base‘𝐻) |
| 25 | | eqid 2196 |
. . 3
⊢
(0g‘𝐻) = (0g‘𝐻) |
| 26 | | eqid 2196 |
. . 3
⊢
(+g‘𝐻) = (+g‘𝐻) |
| 27 | 24, 25, 26, 4, 21, 22 | igsumvalx 13032 |
. 2
⊢ (𝜑 → (𝐻 Σg 𝐹) = (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐻)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))))) |
| 28 | 17, 23, 27 | 3eqtr4d 2239 |
1
⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) |