ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumpropd GIF version

Theorem gsumpropd 13094
Description: The group sum depends only on the base set and additive operation. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
gsumpropd.f (𝜑𝐹𝑉)
gsumpropd.g (𝜑𝐺𝑊)
gsumpropd.h (𝜑𝐻𝑋)
gsumpropd.b (𝜑 → (Base‘𝐺) = (Base‘𝐻))
gsumpropd.p (𝜑 → (+g𝐺) = (+g𝐻))
Assertion
Ref Expression
gsumpropd (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))

Proof of Theorem gsumpropd
Dummy variables 𝑎 𝑏 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2197 . . . . . . 7 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
2 gsumpropd.b . . . . . . 7 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
3 gsumpropd.g . . . . . . 7 (𝜑𝐺𝑊)
4 gsumpropd.h . . . . . . 7 (𝜑𝐻𝑋)
5 gsumpropd.p . . . . . . . 8 (𝜑 → (+g𝐺) = (+g𝐻))
65oveqdr 5953 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) = (𝑎(+g𝐻)𝑏))
71, 2, 3, 4, 6grpidpropdg 13076 . . . . . 6 (𝜑 → (0g𝐺) = (0g𝐻))
87eqeq2d 2208 . . . . 5 (𝜑 → (𝑥 = (0g𝐺) ↔ 𝑥 = (0g𝐻)))
98anbi2d 464 . . . 4 (𝜑 → ((dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐺)) ↔ (dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐻))))
105seqeq2d 10563 . . . . . . . . 9 (𝜑 → seq𝑚((+g𝐺), 𝐹) = seq𝑚((+g𝐻), 𝐹))
1110fveq1d 5563 . . . . . . . 8 (𝜑 → (seq𝑚((+g𝐺), 𝐹)‘𝑛) = (seq𝑚((+g𝐻), 𝐹)‘𝑛))
1211eqeq2d 2208 . . . . . . 7 (𝜑 → (𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))
1312anbi2d 464 . . . . . 6 (𝜑 → ((dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ (dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
1413rexbidv 2498 . . . . 5 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
1514exbidv 1839 . . . 4 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
169, 15orbi12d 794 . . 3 (𝜑 → (((dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))) ↔ ((dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐻)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))))
1716iotabidv 5242 . 2 (𝜑 → (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)))) = (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐻)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))))
18 eqid 2196 . . 3 (Base‘𝐺) = (Base‘𝐺)
19 eqid 2196 . . 3 (0g𝐺) = (0g𝐺)
20 eqid 2196 . . 3 (+g𝐺) = (+g𝐺)
21 gsumpropd.f . . 3 (𝜑𝐹𝑉)
22 eqidd 2197 . . 3 (𝜑 → dom 𝐹 = dom 𝐹)
2318, 19, 20, 3, 21, 22igsumvalx 13091 . 2 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)))))
24 eqid 2196 . . 3 (Base‘𝐻) = (Base‘𝐻)
25 eqid 2196 . . 3 (0g𝐻) = (0g𝐻)
26 eqid 2196 . . 3 (+g𝐻) = (+g𝐻)
2724, 25, 26, 4, 21, 22igsumvalx 13091 . 2 (𝜑 → (𝐻 Σg 𝐹) = (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐻)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))))
2817, 23, 273eqtr4d 2239 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wex 1506  wcel 2167  wrex 2476  c0 3451  dom cdm 4664  cio 5218  cfv 5259  (class class class)co 5925  cuz 9618  ...cfz 10100  seqcseq 10556  Basecbs 12703  +gcplusg 12780  0gc0g 12958   Σg cgsu 12959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-recs 6372  df-frec 6458  df-neg 8217  df-inn 9008  df-z 9344  df-uz 9619  df-seqfrec 10557  df-ndx 12706  df-slot 12707  df-base 12709  df-0g 12960  df-igsum 12961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator