ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idghm Unicode version

Theorem idghm 13332
Description: The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypothesis
Ref Expression
idghm.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
idghm  |-  ( G  e.  Grp  ->  (  _I  |`  B )  e.  ( G  GrpHom  G ) )

Proof of Theorem idghm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2  |-  ( G  e.  Grp  ->  G  e.  Grp )
2 idghm.b . . . . . . . 8  |-  B  =  ( Base `  G
)
3 eqid 2193 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
42, 3grpcl 13083 . . . . . . 7  |-  ( ( G  e.  Grp  /\  a  e.  B  /\  b  e.  B )  ->  ( a ( +g  `  G ) b )  e.  B )
543expb 1206 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
a ( +g  `  G
) b )  e.  B )
6 fvresi 5752 . . . . . 6  |-  ( ( a ( +g  `  G
) b )  e.  B  ->  ( (  _I  |`  B ) `  ( a ( +g  `  G ) b ) )  =  ( a ( +g  `  G
) b ) )
75, 6syl 14 . . . . 5  |-  ( ( G  e.  Grp  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
(  _I  |`  B ) `
 ( a ( +g  `  G ) b ) )  =  ( a ( +g  `  G ) b ) )
8 fvresi 5752 . . . . . . 7  |-  ( a  e.  B  ->  (
(  _I  |`  B ) `
 a )  =  a )
9 fvresi 5752 . . . . . . 7  |-  ( b  e.  B  ->  (
(  _I  |`  B ) `
 b )  =  b )
108, 9oveqan12d 5938 . . . . . 6  |-  ( ( a  e.  B  /\  b  e.  B )  ->  ( ( (  _I  |`  B ) `  a
) ( +g  `  G
) ( (  _I  |`  B ) `  b
) )  =  ( a ( +g  `  G
) b ) )
1110adantl 277 . . . . 5  |-  ( ( G  e.  Grp  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
( (  _I  |`  B ) `
 a ) ( +g  `  G ) ( (  _I  |`  B ) `
 b ) )  =  ( a ( +g  `  G ) b ) )
127, 11eqtr4d 2229 . . . 4  |-  ( ( G  e.  Grp  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
(  _I  |`  B ) `
 ( a ( +g  `  G ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  G
) ( (  _I  |`  B ) `  b
) ) )
1312ralrimivva 2576 . . 3  |-  ( G  e.  Grp  ->  A. a  e.  B  A. b  e.  B  ( (  _I  |`  B ) `  ( a ( +g  `  G ) b ) )  =  ( ( (  _I  |`  B ) `
 a ) ( +g  `  G ) ( (  _I  |`  B ) `
 b ) ) )
14 f1oi 5539 . . . 4  |-  (  _I  |`  B ) : B -1-1-onto-> B
15 f1of 5501 . . . 4  |-  ( (  _I  |`  B ) : B -1-1-onto-> B  ->  (  _I  |`  B ) : B --> B )
1614, 15ax-mp 5 . . 3  |-  (  _I  |`  B ) : B --> B
1713, 16jctil 312 . 2  |-  ( G  e.  Grp  ->  (
(  _I  |`  B ) : B --> B  /\  A. a  e.  B  A. b  e.  B  (
(  _I  |`  B ) `
 ( a ( +g  `  G ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  G
) ( (  _I  |`  B ) `  b
) ) ) )
182, 2, 3, 3isghm 13316 . 2  |-  ( (  _I  |`  B )  e.  ( G  GrpHom  G )  <-> 
( ( G  e. 
Grp  /\  G  e.  Grp )  /\  (
(  _I  |`  B ) : B --> B  /\  A. a  e.  B  A. b  e.  B  (
(  _I  |`  B ) `
 ( a ( +g  `  G ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  G
) ( (  _I  |`  B ) `  b
) ) ) ) )
191, 1, 17, 18syl21anbrc 1184 1  |-  ( G  e.  Grp  ->  (  _I  |`  B )  e.  ( G  GrpHom  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472    _I cid 4320    |` cres 4662   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   Grpcgrp 13075    GrpHom cghm 13313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-ghm 13314
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator