ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idghm Unicode version

Theorem idghm 13389
Description: The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypothesis
Ref Expression
idghm.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
idghm  |-  ( G  e.  Grp  ->  (  _I  |`  B )  e.  ( G  GrpHom  G ) )

Proof of Theorem idghm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2  |-  ( G  e.  Grp  ->  G  e.  Grp )
2 idghm.b . . . . . . . 8  |-  B  =  ( Base `  G
)
3 eqid 2196 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
42, 3grpcl 13140 . . . . . . 7  |-  ( ( G  e.  Grp  /\  a  e.  B  /\  b  e.  B )  ->  ( a ( +g  `  G ) b )  e.  B )
543expb 1206 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
a ( +g  `  G
) b )  e.  B )
6 fvresi 5755 . . . . . 6  |-  ( ( a ( +g  `  G
) b )  e.  B  ->  ( (  _I  |`  B ) `  ( a ( +g  `  G ) b ) )  =  ( a ( +g  `  G
) b ) )
75, 6syl 14 . . . . 5  |-  ( ( G  e.  Grp  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
(  _I  |`  B ) `
 ( a ( +g  `  G ) b ) )  =  ( a ( +g  `  G ) b ) )
8 fvresi 5755 . . . . . . 7  |-  ( a  e.  B  ->  (
(  _I  |`  B ) `
 a )  =  a )
9 fvresi 5755 . . . . . . 7  |-  ( b  e.  B  ->  (
(  _I  |`  B ) `
 b )  =  b )
108, 9oveqan12d 5941 . . . . . 6  |-  ( ( a  e.  B  /\  b  e.  B )  ->  ( ( (  _I  |`  B ) `  a
) ( +g  `  G
) ( (  _I  |`  B ) `  b
) )  =  ( a ( +g  `  G
) b ) )
1110adantl 277 . . . . 5  |-  ( ( G  e.  Grp  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
( (  _I  |`  B ) `
 a ) ( +g  `  G ) ( (  _I  |`  B ) `
 b ) )  =  ( a ( +g  `  G ) b ) )
127, 11eqtr4d 2232 . . . 4  |-  ( ( G  e.  Grp  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
(  _I  |`  B ) `
 ( a ( +g  `  G ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  G
) ( (  _I  |`  B ) `  b
) ) )
1312ralrimivva 2579 . . 3  |-  ( G  e.  Grp  ->  A. a  e.  B  A. b  e.  B  ( (  _I  |`  B ) `  ( a ( +g  `  G ) b ) )  =  ( ( (  _I  |`  B ) `
 a ) ( +g  `  G ) ( (  _I  |`  B ) `
 b ) ) )
14 f1oi 5542 . . . 4  |-  (  _I  |`  B ) : B -1-1-onto-> B
15 f1of 5504 . . . 4  |-  ( (  _I  |`  B ) : B -1-1-onto-> B  ->  (  _I  |`  B ) : B --> B )
1614, 15ax-mp 5 . . 3  |-  (  _I  |`  B ) : B --> B
1713, 16jctil 312 . 2  |-  ( G  e.  Grp  ->  (
(  _I  |`  B ) : B --> B  /\  A. a  e.  B  A. b  e.  B  (
(  _I  |`  B ) `
 ( a ( +g  `  G ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  G
) ( (  _I  |`  B ) `  b
) ) ) )
182, 2, 3, 3isghm 13373 . 2  |-  ( (  _I  |`  B )  e.  ( G  GrpHom  G )  <-> 
( ( G  e. 
Grp  /\  G  e.  Grp )  /\  (
(  _I  |`  B ) : B --> B  /\  A. a  e.  B  A. b  e.  B  (
(  _I  |`  B ) `
 ( a ( +g  `  G ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  G
) ( (  _I  |`  B ) `  b
) ) ) ) )
191, 1, 17, 18syl21anbrc 1184 1  |-  ( G  e.  Grp  ->  (  _I  |`  B )  e.  ( G  GrpHom  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475    _I cid 4323    |` cres 4665   -->wf 5254   -1-1-onto->wf1o 5257   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   Grpcgrp 13132    GrpHom cghm 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-ghm 13371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator