ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idghm GIF version

Theorem idghm 13215
Description: The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypothesis
Ref Expression
idghm.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
idghm (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺))

Proof of Theorem idghm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
2 idghm.b . . . . . . . 8 𝐵 = (Base‘𝐺)
3 eqid 2189 . . . . . . . 8 (+g𝐺) = (+g𝐺)
42, 3grpcl 12968 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝐺)𝑏) ∈ 𝐵)
543expb 1206 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝐺)𝑏) ∈ 𝐵)
6 fvresi 5730 . . . . . 6 ((𝑎(+g𝐺)𝑏) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑎(+g𝐺)𝑏)) = (𝑎(+g𝐺)𝑏))
75, 6syl 14 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g𝐺)𝑏)) = (𝑎(+g𝐺)𝑏))
8 fvresi 5730 . . . . . . 7 (𝑎𝐵 → (( I ↾ 𝐵)‘𝑎) = 𝑎)
9 fvresi 5730 . . . . . . 7 (𝑏𝐵 → (( I ↾ 𝐵)‘𝑏) = 𝑏)
108, 9oveqan12d 5916 . . . . . 6 ((𝑎𝐵𝑏𝐵) → ((( I ↾ 𝐵)‘𝑎)(+g𝐺)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g𝐺)𝑏))
1110adantl 277 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → ((( I ↾ 𝐵)‘𝑎)(+g𝐺)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g𝐺)𝑏))
127, 11eqtr4d 2225 . . . 4 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝐺)(( I ↾ 𝐵)‘𝑏)))
1312ralrimivva 2572 . . 3 (𝐺 ∈ Grp → ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝐺)(( I ↾ 𝐵)‘𝑏)))
14 f1oi 5518 . . . 4 ( I ↾ 𝐵):𝐵1-1-onto𝐵
15 f1of 5480 . . . 4 (( I ↾ 𝐵):𝐵1-1-onto𝐵 → ( I ↾ 𝐵):𝐵𝐵)
1614, 15ax-mp 5 . . 3 ( I ↾ 𝐵):𝐵𝐵
1713, 16jctil 312 . 2 (𝐺 ∈ Grp → (( I ↾ 𝐵):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝐺)(( I ↾ 𝐵)‘𝑏))))
182, 2, 3, 3isghm 13199 . 2 (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ Grp) ∧ (( I ↾ 𝐵):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝐺)(( I ↾ 𝐵)‘𝑏)))))
191, 1, 17, 18syl21anbrc 1184 1 (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  wral 2468   I cid 4306  cres 4646  wf 5231  1-1-ontowf1o 5234  cfv 5235  (class class class)co 5897  Basecbs 12515  +gcplusg 12592  Grpcgrp 12960   GrpHom cghm 13196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-inn 8951  df-2 9009  df-ndx 12518  df-slot 12519  df-base 12521  df-plusg 12605  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-grp 12963  df-ghm 13197
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator