ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idghm GIF version

Theorem idghm 13710
Description: The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypothesis
Ref Expression
idghm.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
idghm (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺))

Proof of Theorem idghm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
2 idghm.b . . . . . . . 8 𝐵 = (Base‘𝐺)
3 eqid 2207 . . . . . . . 8 (+g𝐺) = (+g𝐺)
42, 3grpcl 13455 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝐺)𝑏) ∈ 𝐵)
543expb 1207 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝐺)𝑏) ∈ 𝐵)
6 fvresi 5800 . . . . . 6 ((𝑎(+g𝐺)𝑏) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑎(+g𝐺)𝑏)) = (𝑎(+g𝐺)𝑏))
75, 6syl 14 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g𝐺)𝑏)) = (𝑎(+g𝐺)𝑏))
8 fvresi 5800 . . . . . . 7 (𝑎𝐵 → (( I ↾ 𝐵)‘𝑎) = 𝑎)
9 fvresi 5800 . . . . . . 7 (𝑏𝐵 → (( I ↾ 𝐵)‘𝑏) = 𝑏)
108, 9oveqan12d 5986 . . . . . 6 ((𝑎𝐵𝑏𝐵) → ((( I ↾ 𝐵)‘𝑎)(+g𝐺)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g𝐺)𝑏))
1110adantl 277 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → ((( I ↾ 𝐵)‘𝑎)(+g𝐺)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g𝐺)𝑏))
127, 11eqtr4d 2243 . . . 4 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝐺)(( I ↾ 𝐵)‘𝑏)))
1312ralrimivva 2590 . . 3 (𝐺 ∈ Grp → ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝐺)(( I ↾ 𝐵)‘𝑏)))
14 f1oi 5583 . . . 4 ( I ↾ 𝐵):𝐵1-1-onto𝐵
15 f1of 5544 . . . 4 (( I ↾ 𝐵):𝐵1-1-onto𝐵 → ( I ↾ 𝐵):𝐵𝐵)
1614, 15ax-mp 5 . . 3 ( I ↾ 𝐵):𝐵𝐵
1713, 16jctil 312 . 2 (𝐺 ∈ Grp → (( I ↾ 𝐵):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝐺)(( I ↾ 𝐵)‘𝑏))))
182, 2, 3, 3isghm 13694 . 2 (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ Grp) ∧ (( I ↾ 𝐵):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝐺)(( I ↾ 𝐵)‘𝑏)))))
191, 1, 17, 18syl21anbrc 1185 1 (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178  wral 2486   I cid 4353  cres 4695  wf 5286  1-1-ontowf1o 5289  cfv 5290  (class class class)co 5967  Basecbs 12947  +gcplusg 13024  Grpcgrp 13447   GrpHom cghm 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-ghm 13692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator