ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ige2m1fz Unicode version

Theorem ige2m1fz 10267
Description: Membership in a 0 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 18-Jun-2018.) (Proof shortened by Alexander van der Vekens, 15-Sep-2018.)
Assertion
Ref Expression
ige2m1fz  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( N  -  1 )  e.  ( 0 ... N ) )

Proof of Theorem ige2m1fz
StepHypRef Expression
1 1eluzge0 9730 . . 3  |-  1  e.  ( ZZ>= `  0 )
2 fzss1 10220 . . 3  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... N )  C_  ( 0 ... N
) )
31, 2ax-mp 5 . 2  |-  ( 1 ... N )  C_  ( 0 ... N
)
4 2z 9435 . . . . 5  |-  2  e.  ZZ
54a1i 9 . . . 4  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
2  e.  ZZ )
6 nn0z 9427 . . . . 5  |-  ( N  e.  NN0  ->  N  e.  ZZ )
76adantr 276 . . . 4  |-  ( ( N  e.  NN0  /\  2  <_  N )  ->  N  e.  ZZ )
8 simpr 110 . . . 4  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
2  <_  N )
9 eluz2 9689 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  N  e.  ZZ  /\  2  <_  N ) )
105, 7, 8, 9syl3anbrc 1184 . . 3  |-  ( ( N  e.  NN0  /\  2  <_  N )  ->  N  e.  ( ZZ>= ` 
2 ) )
11 ige2m1fz1 10266 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  -  1 )  e.  ( 1 ... N
) )
1210, 11syl 14 . 2  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( N  -  1 )  e.  ( 1 ... N ) )
133, 12sselid 3199 1  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( N  -  1 )  e.  ( 0 ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2178    C_ wss 3174   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   0cc0 7960   1c1 7961    <_ cle 8143    - cmin 8278   2c2 9122   NN0cn0 9330   ZZcz 9407   ZZ>=cuz 9683   ...cfz 10165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator