ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ige2m1fz Unicode version

Theorem ige2m1fz 9777
Description: Membership in a 0 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 18-Jun-2018.) (Proof shortened by Alexander van der Vekens, 15-Sep-2018.)
Assertion
Ref Expression
ige2m1fz  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( N  -  1 )  e.  ( 0 ... N ) )

Proof of Theorem ige2m1fz
StepHypRef Expression
1 1eluzge0 9265 . . 3  |-  1  e.  ( ZZ>= `  0 )
2 fzss1 9730 . . 3  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... N )  C_  ( 0 ... N
) )
31, 2ax-mp 7 . 2  |-  ( 1 ... N )  C_  ( 0 ... N
)
4 2z 8980 . . . . 5  |-  2  e.  ZZ
54a1i 9 . . . 4  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
2  e.  ZZ )
6 nn0z 8972 . . . . 5  |-  ( N  e.  NN0  ->  N  e.  ZZ )
76adantr 272 . . . 4  |-  ( ( N  e.  NN0  /\  2  <_  N )  ->  N  e.  ZZ )
8 simpr 109 . . . 4  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
2  <_  N )
9 eluz2 9228 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  N  e.  ZZ  /\  2  <_  N ) )
105, 7, 8, 9syl3anbrc 1146 . . 3  |-  ( ( N  e.  NN0  /\  2  <_  N )  ->  N  e.  ( ZZ>= ` 
2 ) )
11 ige2m1fz1 9776 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  -  1 )  e.  ( 1 ... N
) )
1210, 11syl 14 . 2  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( N  -  1 )  e.  ( 1 ... N ) )
133, 12sseldi 3059 1  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( N  -  1 )  e.  ( 0 ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1461    C_ wss 3035   class class class wbr 3893   ` cfv 5079  (class class class)co 5726   0cc0 7541   1c1 7542    <_ cle 7719    - cmin 7850   2c2 8675   NN0cn0 8875   ZZcz 8952   ZZ>=cuz 9222   ...cfz 9677
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-addcom 7639  ax-addass 7641  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-0id 7647  ax-rnegex 7648  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-ltadd 7655
This theorem depends on definitions:  df-bi 116  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-inn 8625  df-2 8683  df-n0 8876  df-z 8953  df-uz 9223  df-fz 9678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator