ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ige2m1fz GIF version

Theorem ige2m1fz 9783
Description: Membership in a 0 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 18-Jun-2018.) (Proof shortened by Alexander van der Vekens, 15-Sep-2018.)
Assertion
Ref Expression
ige2m1fz ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ (0...𝑁))

Proof of Theorem ige2m1fz
StepHypRef Expression
1 1eluzge0 9271 . . 3 1 ∈ (ℤ‘0)
2 fzss1 9736 . . 3 (1 ∈ (ℤ‘0) → (1...𝑁) ⊆ (0...𝑁))
31, 2ax-mp 7 . 2 (1...𝑁) ⊆ (0...𝑁)
4 2z 8986 . . . . 5 2 ∈ ℤ
54a1i 9 . . . 4 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 2 ∈ ℤ)
6 nn0z 8978 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
76adantr 272 . . . 4 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℤ)
8 simpr 109 . . . 4 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 2 ≤ 𝑁)
9 eluz2 9234 . . . 4 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
105, 7, 8, 9syl3anbrc 1148 . . 3 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ (ℤ‘2))
11 ige2m1fz1 9782 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ (1...𝑁))
1210, 11syl 14 . 2 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ (1...𝑁))
133, 12sseldi 3061 1 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ (0...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1463  wss 3037   class class class wbr 3895  cfv 5081  (class class class)co 5728  0cc0 7547  1c1 7548  cle 7725  cmin 7856  2c2 8681  0cn0 8881  cz 8958  cuz 9228  ...cfz 9683
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-ltadd 7661
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-inn 8631  df-2 8689  df-n0 8882  df-z 8959  df-uz 9229  df-fz 9684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator