ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzdc Unicode version

Theorem eluzdc 9610
Description: Membership of an integer in an upper set of integers is decidable. (Contributed by Jim Kingdon, 18-Apr-2020.)
Assertion
Ref Expression
eluzdc  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  e.  ( ZZ>= `  M
) )

Proof of Theorem eluzdc
StepHypRef Expression
1 zlelttric 9298 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  \/  N  <  M ) )
2 eluz 9541 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  <->  M  <_  N ) )
32biimprd 158 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  ->  N  e.  ( ZZ>= `  M ) ) )
4 zltnle 9299 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  <  M  <->  -.  M  <_  N )
)
54ancoms 268 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  -.  M  <_  N )
)
62notbid 667 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  N  e.  ( ZZ>= `  M )  <->  -.  M  <_  N )
)
76biimprd 158 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  M  <_  N  ->  -.  N  e.  ( ZZ>= `  M )
) )
85, 7sylbid 150 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  ->  -.  N  e.  (
ZZ>= `  M ) ) )
93, 8orim12d 786 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  <_  N  \/  N  <  M )  ->  ( N  e.  ( ZZ>= `  M )  \/  -.  N  e.  (
ZZ>= `  M ) ) ) )
10 df-dc 835 . . 3  |-  (DECID  N  e.  ( ZZ>= `  M )  <->  ( N  e.  ( ZZ>= `  M )  \/  -.  N  e.  ( ZZ>= `  M ) ) )
119, 10imbitrrdi 162 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  <_  N  \/  N  <  M )  -> DECID  N  e.  ( ZZ>=
`  M ) ) )
121, 11mpd 13 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  e.  ( ZZ>= `  M
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    e. wcel 2148   class class class wbr 4004   ` cfv 5217    < clt 7992    <_ cle 7993   ZZcz 9253   ZZ>=cuz 9528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254  df-uz 9529
This theorem is referenced by:  elnn0dc  9611  elnndc  9612  fzneuz  10101  sumdc  11366  summodclem2a  11389  zsumdc  11392  zproddc  11587  nninfdclemcl  12449  nninfdclemp1  12451
  Copyright terms: Public domain W3C validator