ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxlesup Unicode version

Theorem xrmaxlesup 11056
Description: Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 10-May-2023.)
Assertion
Ref Expression
xrmaxlesup  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  <_  C  <->  ( A  <_  C  /\  B  <_  C ) ) )

Proof of Theorem xrmaxlesup
StepHypRef Expression
1 xrltmaxsup 11054 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( C  <  sup ( { A ,  B } ,  RR* ,  <  )  <->  ( C  <  A  \/  C  < 
B ) ) )
21notbid 657 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( -.  C  <  sup ( { A ,  B } ,  RR* ,  <  )  <->  -.  ( C  <  A  \/  C  <  B ) ) )
3 ioran 742 . . 3  |-  ( -.  ( C  <  A  \/  C  <  B )  <-> 
( -.  C  < 
A  /\  -.  C  <  B ) )
42, 3syl6bb 195 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( -.  C  <  sup ( { A ,  B } ,  RR* ,  <  )  <->  ( -.  C  <  A  /\  -.  C  <  B
) ) )
5 xrmaxcl 11049 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( { A ,  B } ,  RR* ,  <  )  e.  RR* )
6 xrlenlt 7849 . . 3  |-  ( ( sup ( { A ,  B } ,  RR* ,  <  )  e.  RR*  /\  C  e.  RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  <_  C  <->  -.  C  <  sup ( { A ,  B } ,  RR* ,  <  ) ) )
75, 6stoic3 1408 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  <_  C  <->  -.  C  <  sup ( { A ,  B } ,  RR* ,  <  ) ) )
8 xrlenlt 7849 . . . 4  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  ( A  <_  C  <->  -.  C  <  A ) )
983adant2 1001 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <_  C  <->  -.  C  <  A ) )
10 xrlenlt 7849 . . . 4  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B  <_  C  <->  -.  C  <  B ) )
11103adant1 1000 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( B  <_  C  <->  -.  C  <  B ) )
129, 11anbi12d 465 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  C  /\  B  <_  C )  <-> 
( -.  C  < 
A  /\  -.  C  <  B ) ) )
134, 7, 123bitr4d 219 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  <_  C  <->  ( A  <_  C  /\  B  <_  C ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 963    e. wcel 1481   {cpr 3529   class class class wbr 3933   supcsup 6873   RR*cxr 7819    < clt 7820    <_ cle 7821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4047  ax-sep 4050  ax-nul 4058  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456  ax-iinf 4506  ax-cnex 7731  ax-resscn 7732  ax-1cn 7733  ax-1re 7734  ax-icn 7735  ax-addcl 7736  ax-addrcl 7737  ax-mulcl 7738  ax-mulrcl 7739  ax-addcom 7740  ax-mulcom 7741  ax-addass 7742  ax-mulass 7743  ax-distr 7744  ax-i2m1 7745  ax-0lt1 7746  ax-1rid 7747  ax-0id 7748  ax-rnegex 7749  ax-precex 7750  ax-cnre 7751  ax-pre-ltirr 7752  ax-pre-ltwlin 7753  ax-pre-lttrn 7754  ax-pre-apti 7755  ax-pre-ltadd 7756  ax-pre-mulgt0 7757  ax-pre-mulext 7758  ax-arch 7759  ax-caucvg 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2689  df-sbc 2911  df-csb 3005  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-nul 3365  df-if 3476  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-int 3776  df-iun 3819  df-br 3934  df-opab 3994  df-mpt 3995  df-tr 4031  df-id 4219  df-po 4222  df-iso 4223  df-iord 4292  df-on 4294  df-ilim 4295  df-suc 4297  df-iom 4509  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-res 4555  df-ima 4556  df-iota 5092  df-fun 5129  df-fn 5130  df-f 5131  df-f1 5132  df-fo 5133  df-f1o 5134  df-fv 5135  df-riota 5734  df-ov 5781  df-oprab 5782  df-mpo 5783  df-1st 6042  df-2nd 6043  df-recs 6206  df-frec 6292  df-sup 6875  df-pnf 7822  df-mnf 7823  df-xr 7824  df-ltxr 7825  df-le 7826  df-sub 7955  df-neg 7956  df-reap 8357  df-ap 8364  df-div 8453  df-inn 8741  df-2 8799  df-3 8800  df-4 8801  df-n0 8998  df-z 9075  df-uz 9347  df-rp 9467  df-seqfrec 10246  df-exp 10320  df-cj 10642  df-re 10643  df-im 10644  df-rsqrt 10798  df-abs 10799
This theorem is referenced by:  xrlemininf  11068  xmetxp  12706
  Copyright terms: Public domain W3C validator