ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubgrpd Unicode version

Theorem issubgrpd 13527
Description: Prove a subgroup by closure. (Contributed by Stefan O'Rear, 7-Dec-2014.)
Hypotheses
Ref Expression
issubgrpd.s  |-  ( ph  ->  S  =  ( Is  D ) )
issubgrpd.z  |-  ( ph  ->  .0.  =  ( 0g
`  I ) )
issubgrpd.p  |-  ( ph  ->  .+  =  ( +g  `  I ) )
issubgrpd.ss  |-  ( ph  ->  D  C_  ( Base `  I ) )
issubgrpd.zcl  |-  ( ph  ->  .0.  e.  D )
issubgrpd.acl  |-  ( (
ph  /\  x  e.  D  /\  y  e.  D
)  ->  ( x  .+  y )  e.  D
)
issubgrpd.ncl  |-  ( (
ph  /\  x  e.  D )  ->  (
( invg `  I ) `  x
)  e.  D )
issubgrpd.g  |-  ( ph  ->  I  e.  Grp )
Assertion
Ref Expression
issubgrpd  |-  ( ph  ->  S  e.  Grp )
Distinct variable groups:    x, y,  .0.    x, D, y    x, I, y    x,  .+ , y    ph, x, y    x, S, y

Proof of Theorem issubgrpd
StepHypRef Expression
1 issubgrpd.s . 2  |-  ( ph  ->  S  =  ( Is  D ) )
2 issubgrpd.z . . . 4  |-  ( ph  ->  .0.  =  ( 0g
`  I ) )
3 issubgrpd.p . . . 4  |-  ( ph  ->  .+  =  ( +g  `  I ) )
4 issubgrpd.ss . . . 4  |-  ( ph  ->  D  C_  ( Base `  I ) )
5 issubgrpd.zcl . . . 4  |-  ( ph  ->  .0.  e.  D )
6 issubgrpd.acl . . . 4  |-  ( (
ph  /\  x  e.  D  /\  y  e.  D
)  ->  ( x  .+  y )  e.  D
)
7 issubgrpd.ncl . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  (
( invg `  I ) `  x
)  e.  D )
8 issubgrpd.g . . . 4  |-  ( ph  ->  I  e.  Grp )
91, 2, 3, 4, 5, 6, 7, 8issubgrpd2 13526 . . 3  |-  ( ph  ->  D  e.  (SubGrp `  I ) )
10 eqid 2205 . . . 4  |-  ( Is  D )  =  ( Is  D )
1110subggrp 13513 . . 3  |-  ( D  e.  (SubGrp `  I
)  ->  ( Is  D
)  e.  Grp )
129, 11syl 14 . 2  |-  ( ph  ->  ( Is  D )  e.  Grp )
131, 12eqeltrd 2282 1  |-  ( ph  ->  S  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176    C_ wss 3166   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833   +g cplusg 12909   0gc0g 13088   Grpcgrp 13332   invgcminusg 13333  SubGrpcsubg 13503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-subg 13506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator