ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubgrpd2 Unicode version

Theorem issubgrpd2 13082
Description: Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.)
Hypotheses
Ref Expression
issubgrpd.s  |-  ( ph  ->  S  =  ( Is  D ) )
issubgrpd.z  |-  ( ph  ->  .0.  =  ( 0g
`  I ) )
issubgrpd.p  |-  ( ph  ->  .+  =  ( +g  `  I ) )
issubgrpd.ss  |-  ( ph  ->  D  C_  ( Base `  I ) )
issubgrpd.zcl  |-  ( ph  ->  .0.  e.  D )
issubgrpd.acl  |-  ( (
ph  /\  x  e.  D  /\  y  e.  D
)  ->  ( x  .+  y )  e.  D
)
issubgrpd.ncl  |-  ( (
ph  /\  x  e.  D )  ->  (
( invg `  I ) `  x
)  e.  D )
issubgrpd.g  |-  ( ph  ->  I  e.  Grp )
Assertion
Ref Expression
issubgrpd2  |-  ( ph  ->  D  e.  (SubGrp `  I ) )
Distinct variable groups:    x, y,  .0.    x, D, y    x, I, y    x,  .+ , y    ph, x, y    x, S, y

Proof of Theorem issubgrpd2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 issubgrpd.ss . 2  |-  ( ph  ->  D  C_  ( Base `  I ) )
2 issubgrpd.zcl . . 3  |-  ( ph  ->  .0.  e.  D )
3 elex2 2765 . . 3  |-  (  .0. 
e.  D  ->  E. w  w  e.  D )
42, 3syl 14 . 2  |-  ( ph  ->  E. w  w  e.  D )
5 issubgrpd.p . . . . . . . 8  |-  ( ph  ->  .+  =  ( +g  `  I ) )
65oveqd 5905 . . . . . . 7  |-  ( ph  ->  ( x  .+  y
)  =  ( x ( +g  `  I
) y ) )
76ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  x  e.  D )  /\  y  e.  D )  ->  (
x  .+  y )  =  ( x ( +g  `  I ) y ) )
8 issubgrpd.acl . . . . . . 7  |-  ( (
ph  /\  x  e.  D  /\  y  e.  D
)  ->  ( x  .+  y )  e.  D
)
983expa 1204 . . . . . 6  |-  ( ( ( ph  /\  x  e.  D )  /\  y  e.  D )  ->  (
x  .+  y )  e.  D )
107, 9eqeltrrd 2265 . . . . 5  |-  ( ( ( ph  /\  x  e.  D )  /\  y  e.  D )  ->  (
x ( +g  `  I
) y )  e.  D )
1110ralrimiva 2560 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  A. y  e.  D  ( x
( +g  `  I ) y )  e.  D
)
12 issubgrpd.ncl . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  (
( invg `  I ) `  x
)  e.  D )
1311, 12jca 306 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  ( A. y  e.  D  ( x ( +g  `  I ) y )  e.  D  /\  (
( invg `  I ) `  x
)  e.  D ) )
1413ralrimiva 2560 . 2  |-  ( ph  ->  A. x  e.  D  ( A. y  e.  D  ( x ( +g  `  I ) y )  e.  D  /\  (
( invg `  I ) `  x
)  e.  D ) )
15 issubgrpd.g . . 3  |-  ( ph  ->  I  e.  Grp )
16 eqid 2187 . . . 4  |-  ( Base `  I )  =  (
Base `  I )
17 eqid 2187 . . . 4  |-  ( +g  `  I )  =  ( +g  `  I )
18 eqid 2187 . . . 4  |-  ( invg `  I )  =  ( invg `  I )
1916, 17, 18issubg2m 13081 . . 3  |-  ( I  e.  Grp  ->  ( D  e.  (SubGrp `  I
)  <->  ( D  C_  ( Base `  I )  /\  E. w  w  e.  D  /\  A. x  e.  D  ( A. y  e.  D  (
x ( +g  `  I
) y )  e.  D  /\  ( ( invg `  I
) `  x )  e.  D ) ) ) )
2015, 19syl 14 . 2  |-  ( ph  ->  ( D  e.  (SubGrp `  I )  <->  ( D  C_  ( Base `  I
)  /\  E. w  w  e.  D  /\  A. x  e.  D  ( A. y  e.  D  ( x ( +g  `  I ) y )  e.  D  /\  (
( invg `  I ) `  x
)  e.  D ) ) ) )
211, 4, 14, 20mpbir3and 1181 1  |-  ( ph  ->  D  e.  (SubGrp `  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    = wceq 1363   E.wex 1502    e. wcel 2158   A.wral 2465    C_ wss 3141   ` cfv 5228  (class class class)co 5888   Basecbs 12476   ↾s cress 12477   +g cplusg 12551   0gc0g 12723   Grpcgrp 12899   invgcminusg 12900  SubGrpcsubg 13059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-pre-ltirr 7937  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-ltxr 8011  df-inn 8934  df-2 8992  df-ndx 12479  df-slot 12480  df-base 12482  df-sets 12483  df-iress 12484  df-plusg 12564  df-0g 12725  df-mgm 12794  df-sgrp 12827  df-mnd 12840  df-grp 12902  df-minusg 12903  df-subg 13062
This theorem is referenced by:  issubgrpd  13083  issubrgd  13641
  Copyright terms: Public domain W3C validator