ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubgrpd GIF version

Theorem issubgrpd 13083
Description: Prove a subgroup by closure. (Contributed by Stefan O'Rear, 7-Dec-2014.)
Hypotheses
Ref Expression
issubgrpd.s (𝜑𝑆 = (𝐼s 𝐷))
issubgrpd.z (𝜑0 = (0g𝐼))
issubgrpd.p (𝜑+ = (+g𝐼))
issubgrpd.ss (𝜑𝐷 ⊆ (Base‘𝐼))
issubgrpd.zcl (𝜑0𝐷)
issubgrpd.acl ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)
issubgrpd.ncl ((𝜑𝑥𝐷) → ((invg𝐼)‘𝑥) ∈ 𝐷)
issubgrpd.g (𝜑𝐼 ∈ Grp)
Assertion
Ref Expression
issubgrpd (𝜑𝑆 ∈ Grp)
Distinct variable groups:   𝑥,𝑦, 0   𝑥,𝐷,𝑦   𝑥,𝐼,𝑦   𝑥, + ,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦

Proof of Theorem issubgrpd
StepHypRef Expression
1 issubgrpd.s . 2 (𝜑𝑆 = (𝐼s 𝐷))
2 issubgrpd.z . . . 4 (𝜑0 = (0g𝐼))
3 issubgrpd.p . . . 4 (𝜑+ = (+g𝐼))
4 issubgrpd.ss . . . 4 (𝜑𝐷 ⊆ (Base‘𝐼))
5 issubgrpd.zcl . . . 4 (𝜑0𝐷)
6 issubgrpd.acl . . . 4 ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)
7 issubgrpd.ncl . . . 4 ((𝜑𝑥𝐷) → ((invg𝐼)‘𝑥) ∈ 𝐷)
8 issubgrpd.g . . . 4 (𝜑𝐼 ∈ Grp)
91, 2, 3, 4, 5, 6, 7, 8issubgrpd2 13082 . . 3 (𝜑𝐷 ∈ (SubGrp‘𝐼))
10 eqid 2187 . . . 4 (𝐼s 𝐷) = (𝐼s 𝐷)
1110subggrp 13069 . . 3 (𝐷 ∈ (SubGrp‘𝐼) → (𝐼s 𝐷) ∈ Grp)
129, 11syl 14 . 2 (𝜑 → (𝐼s 𝐷) ∈ Grp)
131, 12eqeltrd 2264 1 (𝜑𝑆 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 979   = wceq 1363  wcel 2158  wss 3141  cfv 5228  (class class class)co 5888  Basecbs 12476  s cress 12477  +gcplusg 12551  0gc0g 12723  Grpcgrp 12899  invgcminusg 12900  SubGrpcsubg 13059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-pre-ltirr 7937  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-ltxr 8011  df-inn 8934  df-2 8992  df-ndx 12479  df-slot 12480  df-base 12482  df-sets 12483  df-iress 12484  df-plusg 12564  df-0g 12725  df-mgm 12794  df-sgrp 12827  df-mnd 12840  df-grp 12902  df-minusg 12903  df-subg 13062
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator