ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxss12 GIF version

Theorem ixxss12 9640
Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 20-Feb-2015.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
ixxssixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixxss12.2 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
ixxss12.3 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐶𝐶𝑇𝑤) → 𝐴𝑅𝑤))
ixxss12.4 ((𝑤 ∈ ℝ*𝐷 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤𝑈𝐷𝐷𝑋𝐵) → 𝑤𝑆𝐵))
Assertion
Ref Expression
ixxss12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) → (𝐶𝑃𝐷) ⊆ (𝐴𝑂𝐵))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐶,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧   𝑤,𝑂,𝑥   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑃   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑈,𝑦,𝑧   𝑤,𝑊   𝑤,𝑋
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑧)   𝑅(𝑤)   𝑆(𝑤)   𝑇(𝑤)   𝑈(𝑤)   𝑂(𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem ixxss12
StepHypRef Expression
1 ixxss12.2 . . . . . . . 8 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
21elixx3g 9635 . . . . . . 7 (𝑤 ∈ (𝐶𝑃𝐷) ↔ ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐶𝑇𝑤𝑤𝑈𝐷)))
32simplbi 270 . . . . . 6 (𝑤 ∈ (𝐶𝑃𝐷) → (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝑤 ∈ ℝ*))
43adantl 273 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝑤 ∈ ℝ*))
54simp3d 978 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝑤 ∈ ℝ*)
6 simplrl 507 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝐴𝑊𝐶)
72simprbi 271 . . . . . . 7 (𝑤 ∈ (𝐶𝑃𝐷) → (𝐶𝑇𝑤𝑤𝑈𝐷))
87adantl 273 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → (𝐶𝑇𝑤𝑤𝑈𝐷))
98simpld 111 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝐶𝑇𝑤)
10 simplll 505 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝐴 ∈ ℝ*)
114simp1d 976 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝐶 ∈ ℝ*)
12 ixxss12.3 . . . . . 6 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐶𝐶𝑇𝑤) → 𝐴𝑅𝑤))
1310, 11, 5, 12syl3anc 1199 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → ((𝐴𝑊𝐶𝐶𝑇𝑤) → 𝐴𝑅𝑤))
146, 9, 13mp2and 427 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝐴𝑅𝑤)
158simprd 113 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝑤𝑈𝐷)
16 simplrr 508 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝐷𝑋𝐵)
174simp2d 977 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝐷 ∈ ℝ*)
18 simpllr 506 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝐵 ∈ ℝ*)
19 ixxss12.4 . . . . . 6 ((𝑤 ∈ ℝ*𝐷 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤𝑈𝐷𝐷𝑋𝐵) → 𝑤𝑆𝐵))
205, 17, 18, 19syl3anc 1199 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → ((𝑤𝑈𝐷𝐷𝑋𝐵) → 𝑤𝑆𝐵))
2115, 16, 20mp2and 427 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝑤𝑆𝐵)
22 ixxssixx.1 . . . . . 6 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
2322elixx1 9631 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
2423ad2antrr 477 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
255, 14, 21, 24mpbir3and 1147 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝑤 ∈ (𝐴𝑂𝐵))
2625ex 114 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) → (𝑤 ∈ (𝐶𝑃𝐷) → 𝑤 ∈ (𝐴𝑂𝐵)))
2726ssrdv 3071 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) → (𝐶𝑃𝐷) ⊆ (𝐴𝑂𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 945   = wceq 1314  wcel 1463  {crab 2395  wss 3039   class class class wbr 3897  (class class class)co 5740  cmpo 5742  *cxr 7763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-pnf 7766  df-mnf 7767  df-xr 7768
This theorem is referenced by:  iccss  9675  iccssioo  9676  icossico  9677  iccss2  9678  iccssico  9679  iocssioo  9697  icossioo  9698  ioossioo  9699
  Copyright terms: Public domain W3C validator