Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxss12 GIF version

Theorem ixxss12 9739
 Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 20-Feb-2015.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
ixxssixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixxss12.2 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
ixxss12.3 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐶𝐶𝑇𝑤) → 𝐴𝑅𝑤))
ixxss12.4 ((𝑤 ∈ ℝ*𝐷 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤𝑈𝐷𝐷𝑋𝐵) → 𝑤𝑆𝐵))
Assertion
Ref Expression
ixxss12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) → (𝐶𝑃𝐷) ⊆ (𝐴𝑂𝐵))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐶,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧   𝑤,𝑂,𝑥   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑃   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑈,𝑦,𝑧   𝑤,𝑊   𝑤,𝑋
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑧)   𝑅(𝑤)   𝑆(𝑤)   𝑇(𝑤)   𝑈(𝑤)   𝑂(𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem ixxss12
StepHypRef Expression
1 ixxss12.2 . . . . . . . 8 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
21elixx3g 9734 . . . . . . 7 (𝑤 ∈ (𝐶𝑃𝐷) ↔ ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐶𝑇𝑤𝑤𝑈𝐷)))
32simplbi 272 . . . . . 6 (𝑤 ∈ (𝐶𝑃𝐷) → (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝑤 ∈ ℝ*))
43adantl 275 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → (𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝑤 ∈ ℝ*))
54simp3d 996 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝑤 ∈ ℝ*)
6 simplrl 525 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝐴𝑊𝐶)
72simprbi 273 . . . . . . 7 (𝑤 ∈ (𝐶𝑃𝐷) → (𝐶𝑇𝑤𝑤𝑈𝐷))
87adantl 275 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → (𝐶𝑇𝑤𝑤𝑈𝐷))
98simpld 111 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝐶𝑇𝑤)
10 simplll 523 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝐴 ∈ ℝ*)
114simp1d 994 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝐶 ∈ ℝ*)
12 ixxss12.3 . . . . . 6 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐶𝐶𝑇𝑤) → 𝐴𝑅𝑤))
1310, 11, 5, 12syl3anc 1217 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → ((𝐴𝑊𝐶𝐶𝑇𝑤) → 𝐴𝑅𝑤))
146, 9, 13mp2and 430 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝐴𝑅𝑤)
158simprd 113 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝑤𝑈𝐷)
16 simplrr 526 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝐷𝑋𝐵)
174simp2d 995 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝐷 ∈ ℝ*)
18 simpllr 524 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝐵 ∈ ℝ*)
19 ixxss12.4 . . . . . 6 ((𝑤 ∈ ℝ*𝐷 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤𝑈𝐷𝐷𝑋𝐵) → 𝑤𝑆𝐵))
205, 17, 18, 19syl3anc 1217 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → ((𝑤𝑈𝐷𝐷𝑋𝐵) → 𝑤𝑆𝐵))
2115, 16, 20mp2and 430 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝑤𝑆𝐵)
22 ixxssixx.1 . . . . . 6 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
2322elixx1 9730 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
2423ad2antrr 480 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
255, 14, 21, 24mpbir3and 1165 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) ∧ 𝑤 ∈ (𝐶𝑃𝐷)) → 𝑤 ∈ (𝐴𝑂𝐵))
2625ex 114 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) → (𝑤 ∈ (𝐶𝑃𝐷) → 𝑤 ∈ (𝐴𝑂𝐵)))
2726ssrdv 3109 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) → (𝐶𝑃𝐷) ⊆ (𝐴𝑂𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   = wceq 1332   ∈ wcel 1481  {crab 2421   ⊆ wss 3077   class class class wbr 3938  (class class class)co 5783   ∈ cmpo 5785  ℝ*cxr 7843 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4055  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461  ax-cnex 7755  ax-resscn 7756 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2692  df-sbc 2915  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-br 3939  df-opab 3999  df-id 4224  df-xp 4554  df-rel 4555  df-cnv 4556  df-co 4557  df-dm 4558  df-iota 5097  df-fun 5134  df-fv 5140  df-ov 5786  df-oprab 5787  df-mpo 5788  df-pnf 7846  df-mnf 7847  df-xr 7848 This theorem is referenced by:  iccss  9774  iccssioo  9775  icossico  9776  iccss2  9777  iccssico  9778  iocssioo  9796  icossioo  9797  ioossioo  9798
 Copyright terms: Public domain W3C validator