ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lenegcon2 Unicode version

Theorem lenegcon2 8614
Description: Contraposition of negative in 'less than or equal to'. (Contributed by NM, 8-Oct-2005.)
Assertion
Ref Expression
lenegcon2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  -u B  <->  B  <_  -u A ) )

Proof of Theorem lenegcon2
StepHypRef Expression
1 renegcl 8407 . . 3  |-  ( B  e.  RR  ->  -u B  e.  RR )
2 leneg 8612 . . 3  |-  ( ( A  e.  RR  /\  -u B  e.  RR )  ->  ( A  <_  -u B  <->  -u -u B  <_  -u A
) )
31, 2sylan2 286 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  -u B  <->  -u -u B  <_  -u A
) )
4 recn 8132 . . . . 5  |-  ( B  e.  RR  ->  B  e.  CC )
54negnegd 8448 . . . 4  |-  ( B  e.  RR  ->  -u -u B  =  B )
65adantl 277 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u -u B  =  B )
76breq1d 4093 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u -u B  <_ 
-u A  <->  B  <_  -u A ) )
83, 7bitrd 188 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  -u B  <->  B  <_  -u A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4083   RRcr 7998    <_ cle 8182   -ucneg 8318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320
This theorem is referenced by:  lenegcon2d  8675  lemininf  11745  zabsle1  15678
  Copyright terms: Public domain W3C validator