ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negnegd Unicode version

Theorem negnegd 8328
Description: A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
negnegd  |-  ( ph  -> 
-u -u A  =  A )

Proof of Theorem negnegd
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 negneg 8276 . 2  |-  ( A  e.  CC  ->  -u -u A  =  A )
31, 2syl 14 1  |-  ( ph  -> 
-u -u A  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   CCcc 7877   -ucneg 8198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573  ax-resscn 7971  ax-1cn 7972  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sub 8199  df-neg 8200
This theorem is referenced by:  ltnegcon1  8490  ltnegcon2  8491  lenegcon1  8493  lenegcon2  8494  recexre  8605  zaddcllemneg  9365  zeo  9431  zindd  9444  infrenegsupex  9668  supinfneg  9669  infsupneg  9670  supminfex  9671  negm  9689  xnegneg  9908  infssuzex  10323  zsupssdc  10328  ceilid  10407  expnegap0  10639  expaddzaplem  10674  expaddzap  10675  cjcj  11048  negfi  11393  minabs  11401  minclpr  11402  mingeb  11407  sincossq  11913  pcid  12493  4sqlem10  12556  znnen  12615  mulgnegnn  13262  mulgsubcl  13266  mulgneg  13270  mulgz  13280  mulgass  13289  ghmmulg  13386  ptolemy  15060  lgsdir2lem4  15272
  Copyright terms: Public domain W3C validator