| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negnegd | Unicode version | ||
| Description: A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 |
|
| Ref | Expression |
|---|---|
| negnegd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 |
. 2
| |
| 2 | negneg 8276 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 df-neg 8200 |
| This theorem is referenced by: ltnegcon1 8490 ltnegcon2 8491 lenegcon1 8493 lenegcon2 8494 recexre 8605 zaddcllemneg 9365 zeo 9431 zindd 9444 infrenegsupex 9668 supinfneg 9669 infsupneg 9670 supminfex 9671 negm 9689 xnegneg 9908 infssuzex 10323 zsupssdc 10328 ceilid 10407 expnegap0 10639 expaddzaplem 10674 expaddzap 10675 cjcj 11048 negfi 11393 minabs 11401 minclpr 11402 mingeb 11407 sincossq 11913 pcid 12493 4sqlem10 12556 znnen 12615 mulgnegnn 13262 mulgsubcl 13266 mulgneg 13270 mulgz 13280 mulgass 13289 ghmmulg 13386 ptolemy 15060 lgsdir2lem4 15272 |
| Copyright terms: Public domain | W3C validator |