ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullt0 Unicode version

Theorem mullt0 8468
Description: The product of two negative numbers is positive. (Contributed by Jeff Hankins, 8-Jun-2009.)
Assertion
Ref Expression
mullt0  |-  ( ( ( A  e.  RR  /\  A  <  0 )  /\  ( B  e.  RR  /\  B  <  0 ) )  -> 
0  <  ( A  x.  B ) )

Proof of Theorem mullt0
StepHypRef Expression
1 renegcl 8249 . . . . 5  |-  ( A  e.  RR  ->  -u A  e.  RR )
21adantr 276 . . . 4  |-  ( ( A  e.  RR  /\  A  <  0 )  ->  -u A  e.  RR )
3 lt0neg1 8456 . . . . 5  |-  ( A  e.  RR  ->  ( A  <  0  <->  0  <  -u A ) )
43biimpa 296 . . . 4  |-  ( ( A  e.  RR  /\  A  <  0 )  -> 
0  <  -u A )
52, 4jca 306 . . 3  |-  ( ( A  e.  RR  /\  A  <  0 )  -> 
( -u A  e.  RR  /\  0  <  -u A
) )
6 renegcl 8249 . . . . 5  |-  ( B  e.  RR  ->  -u B  e.  RR )
76adantr 276 . . . 4  |-  ( ( B  e.  RR  /\  B  <  0 )  ->  -u B  e.  RR )
8 lt0neg1 8456 . . . . 5  |-  ( B  e.  RR  ->  ( B  <  0  <->  0  <  -u B ) )
98biimpa 296 . . . 4  |-  ( ( B  e.  RR  /\  B  <  0 )  -> 
0  <  -u B )
107, 9jca 306 . . 3  |-  ( ( B  e.  RR  /\  B  <  0 )  -> 
( -u B  e.  RR  /\  0  <  -u B
) )
11 mulgt0 8063 . . 3  |-  ( ( ( -u A  e.  RR  /\  0  <  -u A )  /\  ( -u B  e.  RR  /\  0  <  -u B ) )  ->  0  <  ( -u A  x.  -u B
) )
125, 10, 11syl2an 289 . 2  |-  ( ( ( A  e.  RR  /\  A  <  0 )  /\  ( B  e.  RR  /\  B  <  0 ) )  -> 
0  <  ( -u A  x.  -u B ) )
13 recn 7975 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
14 recn 7975 . . . 4  |-  ( B  e.  RR  ->  B  e.  CC )
15 mul2neg 8386 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  x.  -u B )  =  ( A  x.  B ) )
1613, 14, 15syl2an 289 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u A  x.  -u B )  =  ( A  x.  B ) )
1716ad2ant2r 509 . 2  |-  ( ( ( A  e.  RR  /\  A  <  0 )  /\  ( B  e.  RR  /\  B  <  0 ) )  -> 
( -u A  x.  -u B
)  =  ( A  x.  B ) )
1812, 17breqtrd 4044 1  |-  ( ( ( A  e.  RR  /\  A  <  0 )  /\  ( B  e.  RR  /\  B  <  0 ) )  -> 
0  <  ( A  x.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   class class class wbr 4018  (class class class)co 5897   CCcc 7840   RRcr 7841   0cc0 7842    x. cmul 7847    < clt 8023   -ucneg 8160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-distr 7946  ax-i2m1 7947  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953  ax-pre-ltadd 7958  ax-pre-mulgt0 7959
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-ltxr 8028  df-sub 8161  df-neg 8162
This theorem is referenced by:  inelr  8572  apsqgt0  8589
  Copyright terms: Public domain W3C validator