ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subid1d Unicode version

Theorem subid1d 8271
Description: Identity law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
subid1d  |-  ( ph  ->  ( A  -  0 )  =  A )

Proof of Theorem subid1d
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 subid1 8191 . 2  |-  ( A  e.  CC  ->  ( A  -  0 )  =  A )
31, 2syl 14 1  |-  ( ph  ->  ( A  -  0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    e. wcel 2158  (class class class)co 5888   CCcc 7823   0cc0 7825    - cmin 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-setind 4548  ax-resscn 7917  ax-1cn 7918  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-sub 8144
This theorem is referenced by:  suble0  8447  lesub0  8450  ltm1  8817  modqid  10363  modqeqmodmin  10408  bcn0  10749  bcnn  10751  hashfzo0  10817  hashfz0  10819  remul2  10896  max0addsup  11242  clim0c  11308  geolim  11533  addmodlteqALT  11879  dvdsmod  11882  ndvdssub  11949  nn0seqcvgd  12055  phiprmpw  12236  pczpre  12311  pcaddlem  12352  pcmpt2  12356  4sqlem9  12398  limcimolemlt  14429  dveflem  14483  sinmpi  14532  cosppi  14535  sinhalfpim  14538  sincosq2sgn  14544  apdifflemr  15092
  Copyright terms: Public domain W3C validator