Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > subid1d | Unicode version |
Description: Identity law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 |
Ref | Expression |
---|---|
subid1d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 | |
2 | subid1 8099 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 wcel 2128 (class class class)co 5826 cc 7732 cc0 7734 cmin 8050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4084 ax-pow 4137 ax-pr 4171 ax-setind 4498 ax-resscn 7826 ax-1cn 7827 ax-icn 7829 ax-addcl 7830 ax-addrcl 7831 ax-mulcl 7832 ax-addcom 7834 ax-addass 7836 ax-distr 7838 ax-i2m1 7839 ax-0id 7842 ax-rnegex 7843 ax-cnre 7845 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-br 3968 df-opab 4028 df-id 4255 df-xp 4594 df-rel 4595 df-cnv 4596 df-co 4597 df-dm 4598 df-iota 5137 df-fun 5174 df-fv 5180 df-riota 5782 df-ov 5829 df-oprab 5830 df-mpo 5831 df-sub 8052 |
This theorem is referenced by: suble0 8355 lesub0 8358 ltm1 8722 modqid 10257 modqeqmodmin 10302 bcn0 10640 bcnn 10642 hashfzo0 10708 hashfz0 10710 remul2 10784 max0addsup 11130 clim0c 11194 geolim 11419 addmodlteqALT 11763 dvdsmod 11766 ndvdssub 11833 nn0seqcvgd 11933 phiprmpw 12112 pczpre 12187 limcimolemlt 13103 dveflem 13157 sinmpi 13206 cosppi 13209 sinhalfpim 13212 sincosq2sgn 13218 apdifflemr 13689 |
Copyright terms: Public domain | W3C validator |