ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subid1d Unicode version

Theorem subid1d 8442
Description: Identity law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
subid1d  |-  ( ph  ->  ( A  -  0 )  =  A )

Proof of Theorem subid1d
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 subid1 8362 . 2  |-  ( A  e.  CC  ->  ( A  -  0 )  =  A )
31, 2syl 14 1  |-  ( ph  ->  ( A  -  0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200  (class class class)co 6000   CCcc 7993   0cc0 7995    - cmin 8313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4628  ax-resscn 8087  ax-1cn 8088  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-sub 8315
This theorem is referenced by:  suble0  8619  lesub0  8622  ltm1  8989  modqid  10566  modqeqmodmin  10611  bcn0  10972  bcnn  10974  hashfzo0  11040  hashfz0  11042  ccatlid  11136  pfxmpt  11207  pfxfv  11211  swrdpfx  11234  pfxpfx  11235  remul2  11379  max0addsup  11725  clim0c  11792  geolim  12017  addmodlteqALT  12365  dvdsmod  12368  ndvdssub  12436  nn0seqcvgd  12558  phiprmpw  12739  pczpre  12815  pcaddlem  12857  pcmpt2  12862  4sqlem9  12904  4sqlem11  12919  zndvds0  14608  limcimolemlt  15332  dveflem  15394  sinmpi  15483  cosppi  15486  sinhalfpim  15489  sincosq2sgn  15495  0sgmppw  15661  apdifflemr  16374
  Copyright terms: Public domain W3C validator