| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subid1d | Unicode version | ||
| Description: Identity law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 |
|
| Ref | Expression |
|---|---|
| subid1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 |
. 2
| |
| 2 | subid1 8312 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-setind 4593 ax-resscn 8037 ax-1cn 8038 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-sub 8265 |
| This theorem is referenced by: suble0 8569 lesub0 8572 ltm1 8939 modqid 10516 modqeqmodmin 10561 bcn0 10922 bcnn 10924 hashfzo0 10990 hashfz0 10992 ccatlid 11085 pfxmpt 11156 pfxfv 11160 swrdpfx 11183 pfxpfx 11184 remul2 11259 max0addsup 11605 clim0c 11672 geolim 11897 addmodlteqALT 12245 dvdsmod 12248 ndvdssub 12316 nn0seqcvgd 12438 phiprmpw 12619 pczpre 12695 pcaddlem 12737 pcmpt2 12742 4sqlem9 12784 4sqlem11 12799 zndvds0 14487 limcimolemlt 15211 dveflem 15273 sinmpi 15362 cosppi 15365 sinhalfpim 15368 sincosq2sgn 15374 0sgmppw 15540 apdifflemr 16127 |
| Copyright terms: Public domain | W3C validator |