ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltadd1 GIF version

Theorem ltadd1 8215
Description: Addition to both sides of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 12-Nov-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltadd1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶)))

Proof of Theorem ltadd1
StepHypRef Expression
1 ltadd2 8205 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
2 simp3 984 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
32recnd 7818 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
4 simp1 982 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
54recnd 7818 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
63, 5addcomd 7937 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + 𝐴) = (𝐴 + 𝐶))
7 simp2 983 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
87recnd 7818 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
93, 8addcomd 7937 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + 𝐵) = (𝐵 + 𝐶))
106, 9breq12d 3950 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶)))
111, 10bitrd 187 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 963  wcel 1481   class class class wbr 3937  (class class class)co 5782  cr 7643   + caddc 7647   < clt 7824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-i2m1 7749  ax-0id 7752  ax-rnegex 7753  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-xp 4553  df-iota 5096  df-fv 5139  df-ov 5785  df-pnf 7826  df-mnf 7827  df-ltxr 7829
This theorem is referenced by:  leadd1  8216  ltsubadd  8218  ltaddsub  8222  lt2add  8231  ltleadd  8232  ltadd1i  8288  ltadd1d  8324  reapadd1  8382  addltmul  8980  avglt2  8983  xltadd1  9689  icoshft  9803  fzonn0p1p1  10021  caucvgre  10785
  Copyright terms: Public domain W3C validator