ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltdiv1i Unicode version

Theorem ltdiv1i 8372
Description: Division of both sides of 'less than' by a positive number. (Contributed by NM, 16-May-1999.)
Hypotheses
Ref Expression
ltplus1.1  |-  A  e.  RR
prodgt0.2  |-  B  e.  RR
ltmul1.3  |-  C  e.  RR
Assertion
Ref Expression
ltdiv1i  |-  ( 0  <  C  ->  ( A  <  B  <->  ( A  /  C )  <  ( B  /  C ) ) )

Proof of Theorem ltdiv1i
StepHypRef Expression
1 ltmul1.3 . 2  |-  C  e.  RR
2 ltplus1.1 . . 3  |-  A  e.  RR
3 prodgt0.2 . . 3  |-  B  e.  RR
4 ltdiv1 8319 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  /  C )  <  ( B  /  C ) ) )
52, 3, 4mp3an12 1263 . 2  |-  ( ( C  e.  RR  /\  0  <  C )  -> 
( A  <  B  <->  ( A  /  C )  <  ( B  /  C ) ) )
61, 5mpan 415 1  |-  ( 0  <  C  ->  ( A  <  B  <->  ( A  /  C )  <  ( B  /  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1438   class class class wbr 3843  (class class class)co 5644   RRcr 7339   0cc0 7340    < clt 7512    / cdiv 8129
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3955  ax-pow 4007  ax-pr 4034  ax-un 4258  ax-setind 4351  ax-cnex 7426  ax-resscn 7427  ax-1cn 7428  ax-1re 7429  ax-icn 7430  ax-addcl 7431  ax-addrcl 7432  ax-mulcl 7433  ax-mulrcl 7434  ax-addcom 7435  ax-mulcom 7436  ax-addass 7437  ax-mulass 7438  ax-distr 7439  ax-i2m1 7440  ax-0lt1 7441  ax-1rid 7442  ax-0id 7443  ax-rnegex 7444  ax-precex 7445  ax-cnre 7446  ax-pre-ltirr 7447  ax-pre-ltwlin 7448  ax-pre-lttrn 7449  ax-pre-apti 7450  ax-pre-ltadd 7451  ax-pre-mulgt0 7452  ax-pre-mulext 7453
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3429  df-sn 3450  df-pr 3451  df-op 3453  df-uni 3652  df-br 3844  df-opab 3898  df-id 4118  df-po 4121  df-iso 4122  df-xp 4442  df-rel 4443  df-cnv 4444  df-co 4445  df-dm 4446  df-iota 4975  df-fun 5012  df-fv 5018  df-riota 5600  df-ov 5647  df-oprab 5648  df-mpt2 5649  df-pnf 7514  df-mnf 7515  df-xr 7516  df-ltxr 7517  df-le 7518  df-sub 7645  df-neg 7646  df-reap 8042  df-ap 8049  df-div 8130
This theorem is referenced by:  ltdiv1ii  8380
  Copyright terms: Public domain W3C validator