ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltdiv1 Unicode version

Theorem ltdiv1 8976
Description: Division of both sides of 'less than' by a positive number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltdiv1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  /  C )  <  ( B  /  C ) ) )

Proof of Theorem ltdiv1
StepHypRef Expression
1 simp1 1000 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  A  e.  RR )
2 simp2 1001 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  B  e.  RR )
3 simp3l 1028 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  C  e.  RR )
4 simp3r 1029 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
0  <  C )
53, 4gt0ap0d 8737 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  C #  0 )
63, 5rerecclapd 8942 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( 1  /  C
)  e.  RR )
7 recgt0 8958 . . . 4  |-  ( ( C  e.  RR  /\  0  <  C )  -> 
0  <  ( 1  /  C ) )
873ad2ant3 1023 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
0  <  ( 1  /  C ) )
9 ltmul1 8700 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  (
( 1  /  C
)  e.  RR  /\  0  <  ( 1  /  C ) ) )  ->  ( A  < 
B  <->  ( A  x.  ( 1  /  C
) )  <  ( B  x.  ( 1  /  C ) ) ) )
101, 2, 6, 8, 9syl112anc 1254 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  x.  ( 1  /  C ) )  <  ( B  x.  ( 1  /  C
) ) ) )
111recnd 8136 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  A  e.  CC )
123recnd 8136 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  C  e.  CC )
1311, 12, 5divrecapd 8901 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  /  C
)  =  ( A  x.  ( 1  /  C ) ) )
142recnd 8136 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  B  e.  CC )
1514, 12, 5divrecapd 8901 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( B  /  C
)  =  ( B  x.  ( 1  /  C ) ) )
1613, 15breq12d 4072 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  /  C )  <  ( B  /  C )  <->  ( A  x.  ( 1  /  C
) )  <  ( B  x.  ( 1  /  C ) ) ) )
1710, 16bitr4d 191 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  /  C )  <  ( B  /  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   RRcr 7959   0cc0 7960   1c1 7961    x. cmul 7965    < clt 8142    / cdiv 8780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781
This theorem is referenced by:  lediv1  8977  gt0div  8978  ltmuldiv  8982  ltdivmul  8984  ltdiv23  9000  ltdiv1i  9029  ltdiv1d  9899  flltdivnn0lt  10484  flqdiv  10503  hashdvds  12658  hashgcdlem  12675  sinq12gt0  15417  lgsquadlem1  15669  lgsquadlem2  15670  2lgslem1a2  15679
  Copyright terms: Public domain W3C validator