Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltp1d | Unicode version |
Description: A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
ltp1d.1 |
Ref | Expression |
---|---|
ltp1d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltp1d.1 | . 2 | |
2 | ltp1 8739 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 class class class wbr 3982 (class class class)co 5842 cr 7752 c1 7754 caddc 7756 clt 7933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-iota 5153 df-fv 5196 df-ov 5845 df-pnf 7935 df-mnf 7936 df-ltxr 7938 |
This theorem is referenced by: zltp1le 9245 fznatpl1 10011 fzp1disj 10015 fzneuz 10036 fzp1nel 10039 fzonn0p1 10146 rebtwn2z 10190 seq3f1olemqsumk 10434 bernneq3 10577 bcp1nk 10675 bcpasc 10679 hashfzp1 10737 seq3coll 10755 resqrexlemover 10952 fsum1p 11359 cvgratnnlembern 11464 cvgratnnlemseq 11467 cvgratnnlemfm 11470 cvgratz 11473 mertenslemi1 11476 fprodntrivap 11525 fprod1p 11540 fprodeq0 11558 efcllemp 11599 nno 11843 zssinfcl 11881 sqrt2irr 12094 pcprendvds 12222 pcmpt 12273 1arith 12297 exmidunben 12359 nninfdclemp1 12383 suplociccreex 13242 cvgcmp2nlemabs 13911 |
Copyright terms: Public domain | W3C validator |