![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltp1d | Unicode version |
Description: A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
ltp1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ltp1d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltp1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ltp1 8865 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-iota 5216 df-fv 5263 df-ov 5922 df-pnf 8058 df-mnf 8059 df-ltxr 8061 |
This theorem is referenced by: zltp1le 9374 fznatpl1 10145 fzp1disj 10149 fzneuz 10170 fzp1nel 10173 fzonn0p1 10281 rebtwn2z 10326 seq3f1olemqsumk 10586 seqf1oglem1 10593 seqf1oglem2 10594 bernneq3 10736 bcp1nk 10836 bcpasc 10840 hashfzp1 10898 seq3coll 10916 resqrexlemover 11157 fsum1p 11564 cvgratnnlembern 11669 cvgratnnlemseq 11672 cvgratnnlemfm 11675 cvgratz 11678 mertenslemi1 11681 fprodntrivap 11730 fprod1p 11745 fprodeq0 11763 efcllemp 11804 nno 12050 zssinfcl 12088 sqrt2irr 12303 pcprendvds 12431 pcmpt 12484 1arith 12508 4sqlem11 12542 exmidunben 12586 nninfdclemp1 12610 suplociccreex 14803 gausslemma2dlem4 15221 gausslemma2dlem6 15224 lgsquadlem2 15235 cvgcmp2nlemabs 15592 |
Copyright terms: Public domain | W3C validator |