ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltp1d Unicode version

Theorem ltp1d 8887
Description: A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
ltp1d.1  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
ltp1d  |-  ( ph  ->  A  <  ( A  +  1 ) )

Proof of Theorem ltp1d
StepHypRef Expression
1 ltp1d.1 . 2  |-  ( ph  ->  A  e.  RR )
2 ltp1 8801 . 2  |-  ( A  e.  RR  ->  A  <  ( A  +  1 ) )
31, 2syl 14 1  |-  ( ph  ->  A  <  ( A  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   class class class wbr 4004  (class class class)co 5875   RRcr 7810   1c1 7812    + caddc 7814    < clt 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-xp 4633  df-iota 5179  df-fv 5225  df-ov 5878  df-pnf 7994  df-mnf 7995  df-ltxr 7997
This theorem is referenced by:  zltp1le  9307  fznatpl1  10076  fzp1disj  10080  fzneuz  10101  fzp1nel  10104  fzonn0p1  10211  rebtwn2z  10255  seq3f1olemqsumk  10499  bernneq3  10643  bcp1nk  10742  bcpasc  10746  hashfzp1  10804  seq3coll  10822  resqrexlemover  11019  fsum1p  11426  cvgratnnlembern  11531  cvgratnnlemseq  11534  cvgratnnlemfm  11537  cvgratz  11540  mertenslemi1  11543  fprodntrivap  11592  fprod1p  11607  fprodeq0  11625  efcllemp  11666  nno  11911  zssinfcl  11949  sqrt2irr  12162  pcprendvds  12290  pcmpt  12341  1arith  12365  exmidunben  12427  nninfdclemp1  12451  suplociccreex  14105  cvgcmp2nlemabs  14783
  Copyright terms: Public domain W3C validator