| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltp1d | Unicode version | ||
| Description: A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| ltp1d.1 |
|
| Ref | Expression |
|---|---|
| ltp1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1d.1 |
. 2
| |
| 2 | ltp1 8987 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-iota 5277 df-fv 5325 df-ov 6003 df-pnf 8179 df-mnf 8180 df-ltxr 8182 |
| This theorem is referenced by: zltp1le 9497 fznatpl1 10268 fzp1disj 10272 fzneuz 10293 fzp1nel 10296 fzonn0p1 10412 zssinfcl 10447 rebtwn2z 10469 seq3f1olemqsumk 10729 seqf1oglem1 10736 seqf1oglem2 10737 bernneq3 10879 bcp1nk 10979 bcpasc 10983 hashfzp1 11041 seq3coll 11059 resqrexlemover 11516 fsum1p 11924 cvgratnnlembern 12029 cvgratnnlemseq 12032 cvgratnnlemfm 12035 cvgratz 12038 mertenslemi1 12041 fprodntrivap 12090 fprod1p 12105 fprodeq0 12123 efcllemp 12164 nno 12412 sqrt2irr 12679 pcprendvds 12808 pcmpt 12861 1arith 12885 4sqlem11 12919 exmidunben 12992 nninfdclemp1 13016 suplociccreex 15292 perfectlem2 15668 gausslemma2dlem4 15737 gausslemma2dlem6 15740 lgsquadlem2 15751 cvgcmp2nlemabs 16359 |
| Copyright terms: Public domain | W3C validator |