Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltp1d | Unicode version |
Description: A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
ltp1d.1 |
Ref | Expression |
---|---|
ltp1d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltp1d.1 | . 2 | |
2 | ltp1 8760 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 class class class wbr 3989 (class class class)co 5853 cr 7773 c1 7775 caddc 7777 clt 7954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-iota 5160 df-fv 5206 df-ov 5856 df-pnf 7956 df-mnf 7957 df-ltxr 7959 |
This theorem is referenced by: zltp1le 9266 fznatpl1 10032 fzp1disj 10036 fzneuz 10057 fzp1nel 10060 fzonn0p1 10167 rebtwn2z 10211 seq3f1olemqsumk 10455 bernneq3 10598 bcp1nk 10696 bcpasc 10700 hashfzp1 10759 seq3coll 10777 resqrexlemover 10974 fsum1p 11381 cvgratnnlembern 11486 cvgratnnlemseq 11489 cvgratnnlemfm 11492 cvgratz 11495 mertenslemi1 11498 fprodntrivap 11547 fprod1p 11562 fprodeq0 11580 efcllemp 11621 nno 11865 zssinfcl 11903 sqrt2irr 12116 pcprendvds 12244 pcmpt 12295 1arith 12319 exmidunben 12381 nninfdclemp1 12405 suplociccreex 13396 cvgcmp2nlemabs 14064 |
Copyright terms: Public domain | W3C validator |