Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltp1d | Unicode version |
Description: A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
ltp1d.1 |
Ref | Expression |
---|---|
ltp1d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltp1d.1 | . 2 | |
2 | ltp1 8774 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2146 class class class wbr 3998 (class class class)co 5865 cr 7785 c1 7787 caddc 7789 clt 7966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-iota 5170 df-fv 5216 df-ov 5868 df-pnf 7968 df-mnf 7969 df-ltxr 7971 |
This theorem is referenced by: zltp1le 9280 fznatpl1 10046 fzp1disj 10050 fzneuz 10071 fzp1nel 10074 fzonn0p1 10181 rebtwn2z 10225 seq3f1olemqsumk 10469 bernneq3 10612 bcp1nk 10710 bcpasc 10714 hashfzp1 10772 seq3coll 10790 resqrexlemover 10987 fsum1p 11394 cvgratnnlembern 11499 cvgratnnlemseq 11502 cvgratnnlemfm 11505 cvgratz 11508 mertenslemi1 11511 fprodntrivap 11560 fprod1p 11575 fprodeq0 11593 efcllemp 11634 nno 11878 zssinfcl 11916 sqrt2irr 12129 pcprendvds 12257 pcmpt 12308 1arith 12332 exmidunben 12394 nninfdclemp1 12418 suplociccreex 13682 cvgcmp2nlemabs 14350 |
Copyright terms: Public domain | W3C validator |