| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltp1d | Unicode version | ||
| Description: A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| ltp1d.1 |
|
| Ref | Expression |
|---|---|
| ltp1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1d.1 |
. 2
| |
| 2 | ltp1 8952 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-iota 5251 df-fv 5298 df-ov 5970 df-pnf 8144 df-mnf 8145 df-ltxr 8147 |
| This theorem is referenced by: zltp1le 9462 fznatpl1 10233 fzp1disj 10237 fzneuz 10258 fzp1nel 10261 fzonn0p1 10377 zssinfcl 10412 rebtwn2z 10434 seq3f1olemqsumk 10694 seqf1oglem1 10701 seqf1oglem2 10702 bernneq3 10844 bcp1nk 10944 bcpasc 10948 hashfzp1 11006 seq3coll 11024 resqrexlemover 11436 fsum1p 11844 cvgratnnlembern 11949 cvgratnnlemseq 11952 cvgratnnlemfm 11955 cvgratz 11958 mertenslemi1 11961 fprodntrivap 12010 fprod1p 12025 fprodeq0 12043 efcllemp 12084 nno 12332 sqrt2irr 12599 pcprendvds 12728 pcmpt 12781 1arith 12805 4sqlem11 12839 exmidunben 12912 nninfdclemp1 12936 suplociccreex 15211 perfectlem2 15587 gausslemma2dlem4 15656 gausslemma2dlem6 15659 lgsquadlem2 15670 cvgcmp2nlemabs 16173 |
| Copyright terms: Public domain | W3C validator |