ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltp1d Unicode version

Theorem ltp1d 8886
Description: A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
ltp1d.1  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
ltp1d  |-  ( ph  ->  A  <  ( A  +  1 ) )

Proof of Theorem ltp1d
StepHypRef Expression
1 ltp1d.1 . 2  |-  ( ph  ->  A  e.  RR )
2 ltp1 8800 . 2  |-  ( A  e.  RR  ->  A  <  ( A  +  1 ) )
31, 2syl 14 1  |-  ( ph  ->  A  <  ( A  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   class class class wbr 4003  (class class class)co 5874   RRcr 7809   1c1 7811    + caddc 7813    < clt 7991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-xp 4632  df-iota 5178  df-fv 5224  df-ov 5877  df-pnf 7993  df-mnf 7994  df-ltxr 7996
This theorem is referenced by:  zltp1le  9306  fznatpl1  10075  fzp1disj  10079  fzneuz  10100  fzp1nel  10103  fzonn0p1  10210  rebtwn2z  10254  seq3f1olemqsumk  10498  bernneq3  10642  bcp1nk  10741  bcpasc  10745  hashfzp1  10803  seq3coll  10821  resqrexlemover  11018  fsum1p  11425  cvgratnnlembern  11530  cvgratnnlemseq  11533  cvgratnnlemfm  11536  cvgratz  11539  mertenslemi1  11542  fprodntrivap  11591  fprod1p  11606  fprodeq0  11624  efcllemp  11665  nno  11910  zssinfcl  11948  sqrt2irr  12161  pcprendvds  12289  pcmpt  12340  1arith  12364  exmidunben  12426  nninfdclemp1  12450  suplociccreex  14072  cvgcmp2nlemabs  14750
  Copyright terms: Public domain W3C validator