ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltp1 GIF version

Theorem ltp1 8899
Description: A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001.)
Assertion
Ref Expression
ltp1 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))

Proof of Theorem ltp1
StepHypRef Expression
1 1re 8053 . 2 1 ∈ ℝ
2 0lt1 8181 . . 3 0 < 1
3 ltaddpos 8507 . . 3 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 1 ↔ 𝐴 < (𝐴 + 1)))
42, 3mpbii 148 . 2 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 < (𝐴 + 1))
51, 4mpan 424 1 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2175   class class class wbr 4043  (class class class)co 5934  cr 7906  0cc0 7907  1c1 7908   + caddc 7910   < clt 8089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4679  df-iota 5229  df-fv 5276  df-ov 5937  df-pnf 8091  df-mnf 8092  df-ltxr 8094
This theorem is referenced by:  lep1  8900  letrp1  8903  recp1lt1  8954  ledivp1  8958  ltp1i  8960  ltp1d  8985  uzind  9466  ge0p1rp  9789  qbtwnxr  10381  hoverb  15038  reeff1olem  15161
  Copyright terms: Public domain W3C validator