ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpomulf Unicode version

Theorem mpomulf 8124
Description: Multiplication is an operation on complex numbers. Version of ax-mulf 8110 using maps-to notation, proved from the axioms of set theory and ax-mulcl 8085. (Contributed by GG, 16-Mar-2025.)
Assertion
Ref Expression
mpomulf  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) : ( CC  X.  CC ) --> CC
Distinct variable group:    x, y

Proof of Theorem mpomulf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 mulcl 8114 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
21rgen2 2616 . . 3  |-  A. x  e.  CC  A. y  e.  CC  ( x  x.  y )  e.  CC
3 eqid 2229 . . . 4  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  =  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
43fnmpo 6338 . . 3  |-  ( A. x  e.  CC  A. y  e.  CC  ( x  x.  y )  e.  CC  ->  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) )  Fn  ( CC  X.  CC ) )
52, 4ax-mp 5 . 2  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  Fn  ( CC  X.  CC )
6 simpll 527 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  z  =  ( x  x.  y ) )  ->  x  e.  CC )
7 simplr 528 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  z  =  ( x  x.  y ) )  ->  y  e.  CC )
8 eleq1a 2301 . . . . . . 7  |-  ( ( x  x.  y )  e.  CC  ->  (
z  =  ( x  x.  y )  -> 
z  e.  CC ) )
91, 8syl 14 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( z  =  ( x  x.  y )  ->  z  e.  CC ) )
109imp 124 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  z  =  ( x  x.  y ) )  ->  z  e.  CC )
116, 7, 103jca 1201 . . . 4  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  z  =  ( x  x.  y ) )  ->  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )
1211ssoprab2i 6084 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  z  =  ( x  x.  y ) ) }  C_  { <. <.
x ,  y >. ,  z >.  |  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) }
13 df-mpo 5999 . . 3  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  CC  /\  y  e.  CC )  /\  z  =  (
x  x.  y ) ) }
14 dfxp3 6330 . . 3  |-  ( ( CC  X.  CC )  X.  CC )  =  { <. <. x ,  y
>. ,  z >.  |  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) }
1512, 13, 143sstr4i 3265 . 2  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) 
C_  ( ( CC 
X.  CC )  X.  CC )
16 dff2 5772 . 2  |-  ( ( x  e.  CC , 
y  e.  CC  |->  ( x  x.  y ) ) : ( CC 
X.  CC ) --> CC  <->  ( ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) )  Fn  ( CC  X.  CC )  /\  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) )  C_  (
( CC  X.  CC )  X.  CC ) ) )
175, 15, 16mpbir2an 948 1  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) : ( CC  X.  CC ) --> CC
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508    C_ wss 3197    X. cxp 4714    Fn wfn 5309   -->wf 5310  (class class class)co 5994   {coprab 5995    e. cmpo 5996   CCcc 7985    x. cmul 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-mulcl 8085
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fo 5320  df-fv 5322  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277
This theorem is referenced by:  mpomulcn  15225  mpodvdsmulf1o  15649  fsumdvdsmul  15650
  Copyright terms: Public domain W3C validator