ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpomulf Unicode version

Theorem mpomulf 8069
Description: Multiplication is an operation on complex numbers. Version of ax-mulf 8055 using maps-to notation, proved from the axioms of set theory and ax-mulcl 8030. (Contributed by GG, 16-Mar-2025.)
Assertion
Ref Expression
mpomulf  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) : ( CC  X.  CC ) --> CC
Distinct variable group:    x, y

Proof of Theorem mpomulf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 mulcl 8059 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
21rgen2 2593 . . 3  |-  A. x  e.  CC  A. y  e.  CC  ( x  x.  y )  e.  CC
3 eqid 2206 . . . 4  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  =  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
43fnmpo 6295 . . 3  |-  ( A. x  e.  CC  A. y  e.  CC  ( x  x.  y )  e.  CC  ->  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) )  Fn  ( CC  X.  CC ) )
52, 4ax-mp 5 . 2  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  Fn  ( CC  X.  CC )
6 simpll 527 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  z  =  ( x  x.  y ) )  ->  x  e.  CC )
7 simplr 528 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  z  =  ( x  x.  y ) )  ->  y  e.  CC )
8 eleq1a 2278 . . . . . . 7  |-  ( ( x  x.  y )  e.  CC  ->  (
z  =  ( x  x.  y )  -> 
z  e.  CC ) )
91, 8syl 14 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( z  =  ( x  x.  y )  ->  z  e.  CC ) )
109imp 124 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  z  =  ( x  x.  y ) )  ->  z  e.  CC )
116, 7, 103jca 1180 . . . 4  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  z  =  ( x  x.  y ) )  ->  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )
1211ssoprab2i 6041 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  z  =  ( x  x.  y ) ) }  C_  { <. <.
x ,  y >. ,  z >.  |  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) }
13 df-mpo 5956 . . 3  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  CC  /\  y  e.  CC )  /\  z  =  (
x  x.  y ) ) }
14 dfxp3 6287 . . 3  |-  ( ( CC  X.  CC )  X.  CC )  =  { <. <. x ,  y
>. ,  z >.  |  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) }
1512, 13, 143sstr4i 3235 . 2  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) 
C_  ( ( CC 
X.  CC )  X.  CC )
16 dff2 5731 . 2  |-  ( ( x  e.  CC , 
y  e.  CC  |->  ( x  x.  y ) ) : ( CC 
X.  CC ) --> CC  <->  ( ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) )  Fn  ( CC  X.  CC )  /\  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) )  C_  (
( CC  X.  CC )  X.  CC ) ) )
175, 15, 16mpbir2an 945 1  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) : ( CC  X.  CC ) --> CC
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177   A.wral 2485    C_ wss 3167    X. cxp 4677    Fn wfn 5271   -->wf 5272  (class class class)co 5951   {coprab 5952    e. cmpo 5953   CCcc 7930    x. cmul 7937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-mulcl 8030
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fo 5282  df-fv 5284  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234
This theorem is referenced by:  mpomulcn  15082  mpodvdsmulf1o  15506  fsumdvdsmul  15507
  Copyright terms: Public domain W3C validator