ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpomulf Unicode version

Theorem mpomulf 8009
Description: Multiplication is an operation on complex numbers. Version of ax-mulf 7995 using maps-to notation, proved from the axioms of set theory and ax-mulcl 7970. (Contributed by GG, 16-Mar-2025.)
Assertion
Ref Expression
mpomulf  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) : ( CC  X.  CC ) --> CC
Distinct variable group:    x, y

Proof of Theorem mpomulf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 mulcl 7999 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
21rgen2 2580 . . 3  |-  A. x  e.  CC  A. y  e.  CC  ( x  x.  y )  e.  CC
3 eqid 2193 . . . 4  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  =  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
43fnmpo 6255 . . 3  |-  ( A. x  e.  CC  A. y  e.  CC  ( x  x.  y )  e.  CC  ->  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) )  Fn  ( CC  X.  CC ) )
52, 4ax-mp 5 . 2  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  Fn  ( CC  X.  CC )
6 simpll 527 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  z  =  ( x  x.  y ) )  ->  x  e.  CC )
7 simplr 528 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  z  =  ( x  x.  y ) )  ->  y  e.  CC )
8 eleq1a 2265 . . . . . . 7  |-  ( ( x  x.  y )  e.  CC  ->  (
z  =  ( x  x.  y )  -> 
z  e.  CC ) )
91, 8syl 14 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( z  =  ( x  x.  y )  ->  z  e.  CC ) )
109imp 124 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  z  =  ( x  x.  y ) )  ->  z  e.  CC )
116, 7, 103jca 1179 . . . 4  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  z  =  ( x  x.  y ) )  ->  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )
1211ssoprab2i 6007 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  z  =  ( x  x.  y ) ) }  C_  { <. <.
x ,  y >. ,  z >.  |  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) }
13 df-mpo 5923 . . 3  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  CC  /\  y  e.  CC )  /\  z  =  (
x  x.  y ) ) }
14 dfxp3 6247 . . 3  |-  ( ( CC  X.  CC )  X.  CC )  =  { <. <. x ,  y
>. ,  z >.  |  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) }
1512, 13, 143sstr4i 3220 . 2  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) 
C_  ( ( CC 
X.  CC )  X.  CC )
16 dff2 5702 . 2  |-  ( ( x  e.  CC , 
y  e.  CC  |->  ( x  x.  y ) ) : ( CC 
X.  CC ) --> CC  <->  ( ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) )  Fn  ( CC  X.  CC )  /\  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) )  C_  (
( CC  X.  CC )  X.  CC ) ) )
175, 15, 16mpbir2an 944 1  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) : ( CC  X.  CC ) --> CC
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472    C_ wss 3153    X. cxp 4657    Fn wfn 5249   -->wf 5250  (class class class)co 5918   {coprab 5919    e. cmpo 5920   CCcc 7870    x. cmul 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-mulcl 7970
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator