ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpomulf GIF version

Theorem mpomulf 8016
Description: Multiplication is an operation on complex numbers. Version of ax-mulf 8002 using maps-to notation, proved from the axioms of set theory and ax-mulcl 7977. (Contributed by GG, 16-Mar-2025.)
Assertion
Ref Expression
mpomulf (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ
Distinct variable group:   𝑥,𝑦

Proof of Theorem mpomulf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mulcl 8006 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
21rgen2 2583 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 · 𝑦) ∈ ℂ
3 eqid 2196 . . . 4 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))
43fnmpo 6260 . . 3 (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 · 𝑦) ∈ ℂ → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ))
52, 4ax-mp 5 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ)
6 simpll 527 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦)) → 𝑥 ∈ ℂ)
7 simplr 528 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦)) → 𝑦 ∈ ℂ)
8 eleq1a 2268 . . . . . . 7 ((𝑥 · 𝑦) ∈ ℂ → (𝑧 = (𝑥 · 𝑦) → 𝑧 ∈ ℂ))
91, 8syl 14 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧 = (𝑥 · 𝑦) → 𝑧 ∈ ℂ))
109imp 124 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦)) → 𝑧 ∈ ℂ)
116, 7, 103jca 1179 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦)) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ))
1211ssoprab2i 6011 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦))} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)}
13 df-mpo 5927 . . 3 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦))}
14 dfxp3 6252 . . 3 ((ℂ × ℂ) × ℂ) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)}
1512, 13, 143sstr4i 3224 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ⊆ ((ℂ × ℂ) × ℂ)
16 dff2 5706 . 2 ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ) ∧ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ⊆ ((ℂ × ℂ) × ℂ)))
175, 15, 16mpbir2an 944 1 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wral 2475  wss 3157   × cxp 4661   Fn wfn 5253  wf 5254  (class class class)co 5922  {coprab 5923  cmpo 5924  cc 7877   · cmul 7884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-mulcl 7977
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199
This theorem is referenced by:  mpomulcn  14802  mpodvdsmulf1o  15226  fsumdvdsmul  15227
  Copyright terms: Public domain W3C validator