ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpomulf GIF version

Theorem mpomulf 8097
Description: Multiplication is an operation on complex numbers. Version of ax-mulf 8083 using maps-to notation, proved from the axioms of set theory and ax-mulcl 8058. (Contributed by GG, 16-Mar-2025.)
Assertion
Ref Expression
mpomulf (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ
Distinct variable group:   𝑥,𝑦

Proof of Theorem mpomulf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mulcl 8087 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
21rgen2 2594 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 · 𝑦) ∈ ℂ
3 eqid 2207 . . . 4 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))
43fnmpo 6311 . . 3 (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 · 𝑦) ∈ ℂ → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ))
52, 4ax-mp 5 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ)
6 simpll 527 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦)) → 𝑥 ∈ ℂ)
7 simplr 528 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦)) → 𝑦 ∈ ℂ)
8 eleq1a 2279 . . . . . . 7 ((𝑥 · 𝑦) ∈ ℂ → (𝑧 = (𝑥 · 𝑦) → 𝑧 ∈ ℂ))
91, 8syl 14 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧 = (𝑥 · 𝑦) → 𝑧 ∈ ℂ))
109imp 124 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦)) → 𝑧 ∈ ℂ)
116, 7, 103jca 1180 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦)) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ))
1211ssoprab2i 6057 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦))} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)}
13 df-mpo 5972 . . 3 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦))}
14 dfxp3 6303 . . 3 ((ℂ × ℂ) × ℂ) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)}
1512, 13, 143sstr4i 3242 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ⊆ ((ℂ × ℂ) × ℂ)
16 dff2 5747 . 2 ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ) ∧ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ⊆ ((ℂ × ℂ) × ℂ)))
175, 15, 16mpbir2an 945 1 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2178  wral 2486  wss 3174   × cxp 4691   Fn wfn 5285  wf 5286  (class class class)co 5967  {coprab 5968  cmpo 5969  cc 7958   · cmul 7965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-mulcl 8058
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fo 5296  df-fv 5298  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250
This theorem is referenced by:  mpomulcn  15153  mpodvdsmulf1o  15577  fsumdvdsmul  15578
  Copyright terms: Public domain W3C validator