ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul02 Unicode version

Theorem mul02 8430
Description: Multiplication by  0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 10-Aug-1999.)
Assertion
Ref Expression
mul02  |-  ( A  e.  CC  ->  (
0  x.  A )  =  0 )

Proof of Theorem mul02
StepHypRef Expression
1 0cn 8035 . . . 4  |-  0  e.  CC
21subidi 8314 . . 3  |-  ( 0  -  0 )  =  0
32oveq1i 5935 . 2  |-  ( ( 0  -  0 )  x.  A )  =  ( 0  x.  A
)
4 subdir 8429 . . . 4  |-  ( ( 0  e.  CC  /\  0  e.  CC  /\  A  e.  CC )  ->  (
( 0  -  0 )  x.  A )  =  ( ( 0  x.  A )  -  ( 0  x.  A
) ) )
51, 1, 4mp3an12 1338 . . 3  |-  ( A  e.  CC  ->  (
( 0  -  0 )  x.  A )  =  ( ( 0  x.  A )  -  ( 0  x.  A
) ) )
6 mulcl 8023 . . . . 5  |-  ( ( 0  e.  CC  /\  A  e.  CC )  ->  ( 0  x.  A
)  e.  CC )
76subidd 8342 . . . 4  |-  ( ( 0  e.  CC  /\  A  e.  CC )  ->  ( ( 0  x.  A )  -  (
0  x.  A ) )  =  0 )
81, 7mpan 424 . . 3  |-  ( A  e.  CC  ->  (
( 0  x.  A
)  -  ( 0  x.  A ) )  =  0 )
95, 8eqtrd 2229 . 2  |-  ( A  e.  CC  ->  (
( 0  -  0 )  x.  A )  =  0 )
103, 9eqtr3id 2243 1  |-  ( A  e.  CC  ->  (
0  x.  A )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167  (class class class)co 5925   CCcc 7894   0cc0 7896    x. cmul 7901    - cmin 8214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574  ax-resscn 7988  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sub 8216
This theorem is referenced by:  mul02lem2  8431  mul01  8432  mul02i  8433  mul02d  8435  demoivreALT  11956  nnnn0modprm0  12449  cnfldmulg  14208  lgsne0  15363
  Copyright terms: Public domain W3C validator