ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul02 Unicode version

Theorem mul02 8346
Description: Multiplication by  0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 10-Aug-1999.)
Assertion
Ref Expression
mul02  |-  ( A  e.  CC  ->  (
0  x.  A )  =  0 )

Proof of Theorem mul02
StepHypRef Expression
1 0cn 7951 . . . 4  |-  0  e.  CC
21subidi 8230 . . 3  |-  ( 0  -  0 )  =  0
32oveq1i 5887 . 2  |-  ( ( 0  -  0 )  x.  A )  =  ( 0  x.  A
)
4 subdir 8345 . . . 4  |-  ( ( 0  e.  CC  /\  0  e.  CC  /\  A  e.  CC )  ->  (
( 0  -  0 )  x.  A )  =  ( ( 0  x.  A )  -  ( 0  x.  A
) ) )
51, 1, 4mp3an12 1327 . . 3  |-  ( A  e.  CC  ->  (
( 0  -  0 )  x.  A )  =  ( ( 0  x.  A )  -  ( 0  x.  A
) ) )
6 mulcl 7940 . . . . 5  |-  ( ( 0  e.  CC  /\  A  e.  CC )  ->  ( 0  x.  A
)  e.  CC )
76subidd 8258 . . . 4  |-  ( ( 0  e.  CC  /\  A  e.  CC )  ->  ( ( 0  x.  A )  -  (
0  x.  A ) )  =  0 )
81, 7mpan 424 . . 3  |-  ( A  e.  CC  ->  (
( 0  x.  A
)  -  ( 0  x.  A ) )  =  0 )
95, 8eqtrd 2210 . 2  |-  ( A  e.  CC  ->  (
( 0  -  0 )  x.  A )  =  0 )
103, 9eqtr3id 2224 1  |-  ( A  e.  CC  ->  (
0  x.  A )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148  (class class class)co 5877   CCcc 7811   0cc0 7813    x. cmul 7818    - cmin 8130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-resscn 7905  ax-1cn 7906  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-sub 8132
This theorem is referenced by:  mul02lem2  8347  mul01  8348  mul02i  8349  mul02d  8351  demoivreALT  11783  nnnn0modprm0  12257  cnfldmulg  13555  lgsne0  14524
  Copyright terms: Public domain W3C validator