ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul02 Unicode version

Theorem mul02 8281
Description: Multiplication by  0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 10-Aug-1999.)
Assertion
Ref Expression
mul02  |-  ( A  e.  CC  ->  (
0  x.  A )  =  0 )

Proof of Theorem mul02
StepHypRef Expression
1 0cn 7887 . . . 4  |-  0  e.  CC
21subidi 8165 . . 3  |-  ( 0  -  0 )  =  0
32oveq1i 5851 . 2  |-  ( ( 0  -  0 )  x.  A )  =  ( 0  x.  A
)
4 subdir 8280 . . . 4  |-  ( ( 0  e.  CC  /\  0  e.  CC  /\  A  e.  CC )  ->  (
( 0  -  0 )  x.  A )  =  ( ( 0  x.  A )  -  ( 0  x.  A
) ) )
51, 1, 4mp3an12 1317 . . 3  |-  ( A  e.  CC  ->  (
( 0  -  0 )  x.  A )  =  ( ( 0  x.  A )  -  ( 0  x.  A
) ) )
6 mulcl 7876 . . . . 5  |-  ( ( 0  e.  CC  /\  A  e.  CC )  ->  ( 0  x.  A
)  e.  CC )
76subidd 8193 . . . 4  |-  ( ( 0  e.  CC  /\  A  e.  CC )  ->  ( ( 0  x.  A )  -  (
0  x.  A ) )  =  0 )
81, 7mpan 421 . . 3  |-  ( A  e.  CC  ->  (
( 0  x.  A
)  -  ( 0  x.  A ) )  =  0 )
95, 8eqtrd 2198 . 2  |-  ( A  e.  CC  ->  (
( 0  -  0 )  x.  A )  =  0 )
103, 9eqtr3id 2212 1  |-  ( A  e.  CC  ->  (
0  x.  A )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136  (class class class)co 5841   CCcc 7747   0cc0 7749    x. cmul 7754    - cmin 8065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-setind 4513  ax-resscn 7841  ax-1cn 7842  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-distr 7853  ax-i2m1 7854  ax-0id 7857  ax-rnegex 7858  ax-cnre 7860
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-ral 2448  df-rex 2449  df-reu 2450  df-rab 2452  df-v 2727  df-sbc 2951  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-iota 5152  df-fun 5189  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-sub 8067
This theorem is referenced by:  mul02lem2  8282  mul01  8283  mul02i  8284  mul02d  8286  demoivreALT  11710  nnnn0modprm0  12183  lgsne0  13539
  Copyright terms: Public domain W3C validator