| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul02d | Unicode version | ||
| Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| mul01d.1 |
|
| Ref | Expression |
|---|---|
| mul02d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul01d.1 |
. 2
| |
| 2 | mul02 8458 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4584 ax-resscn 8016 ax-1cn 8017 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-sub 8244 |
| This theorem is referenced by: mulneg1 8466 mulap0r 8687 mulap0 8726 un0mulcl 9328 mul2lt0rgt0 9881 mul2lt0np 9884 lincmb01cmp 10124 iccf1o 10125 bcval5 10906 hashxp 10969 remul2 11126 immul2 11133 fsumconst 11707 binomlem 11736 fprodeq0 11870 fprodeq0g 11891 efne0 11931 dvds0 12059 mulmoddvds 12116 mulgcd 12279 bezoutr1 12296 lcmgcd 12342 qnumgt0 12462 pcexp 12574 mulgnn0ass 13436 dvmptcmulcn 15135 dvef 15141 ply1termlem 15156 plyaddlem1 15161 plymullem1 15162 plycoeid3 15171 sin0pilem1 15195 sinhalfpip 15234 sinhalfpim 15235 coshalfpip 15236 coshalfpim 15237 lgsdir2 15452 lgsdir 15454 lgsdirnn0 15466 lgsdinn0 15467 lgsquad2lem2 15501 |
| Copyright terms: Public domain | W3C validator |