ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul02d Unicode version

Theorem mul02d 8494
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
mul01d.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
mul02d  |-  ( ph  ->  ( 0  x.  A
)  =  0 )

Proof of Theorem mul02d
StepHypRef Expression
1 mul01d.1 . 2  |-  ( ph  ->  A  e.  CC )
2 mul02 8489 . 2  |-  ( A  e.  CC  ->  (
0  x.  A )  =  0 )
31, 2syl 14 1  |-  ( ph  ->  ( 0  x.  A
)  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177  (class class class)co 5962   CCcc 7953   0cc0 7955    x. cmul 7960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-setind 4598  ax-resscn 8047  ax-1cn 8048  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-iota 5246  df-fun 5287  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-sub 8275
This theorem is referenced by:  mulneg1  8497  mulap0r  8718  mulap0  8757  un0mulcl  9359  mul2lt0rgt0  9912  mul2lt0np  9915  lincmb01cmp  10155  iccf1o  10156  bcval5  10940  hashxp  11003  remul2  11269  immul2  11276  fsumconst  11850  binomlem  11879  fprodeq0  12013  fprodeq0g  12034  efne0  12074  dvds0  12202  mulmoddvds  12259  mulgcd  12422  bezoutr1  12439  lcmgcd  12485  qnumgt0  12605  pcexp  12717  mulgnn0ass  13579  dvmptcmulcn  15278  dvef  15284  ply1termlem  15299  plyaddlem1  15304  plymullem1  15305  plycoeid3  15314  sin0pilem1  15338  sinhalfpip  15377  sinhalfpim  15378  coshalfpip  15379  coshalfpim  15380  lgsdir2  15595  lgsdir  15597  lgsdirnn0  15609  lgsdinn0  15610  lgsquad2lem2  15644
  Copyright terms: Public domain W3C validator