| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul02d | Unicode version | ||
| Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| mul01d.1 |
|
| Ref | Expression |
|---|---|
| mul02d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul01d.1 |
. 2
| |
| 2 | mul02 8529 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-sub 8315 |
| This theorem is referenced by: mulneg1 8537 mulap0r 8758 mulap0 8797 un0mulcl 9399 mul2lt0rgt0 9952 mul2lt0np 9955 lincmb01cmp 10195 iccf1o 10196 bcval5 10980 hashxp 11043 remul2 11379 immul2 11386 fsumconst 11960 binomlem 11989 fprodeq0 12123 fprodeq0g 12144 efne0 12184 dvds0 12312 mulmoddvds 12369 mulgcd 12532 bezoutr1 12549 lcmgcd 12595 qnumgt0 12715 pcexp 12827 mulgnn0ass 13690 dvmptcmulcn 15389 dvef 15395 ply1termlem 15410 plyaddlem1 15415 plymullem1 15416 plycoeid3 15425 sin0pilem1 15449 sinhalfpip 15488 sinhalfpim 15489 coshalfpip 15490 coshalfpim 15491 lgsdir2 15706 lgsdir 15708 lgsdirnn0 15720 lgsdinn0 15721 lgsquad2lem2 15755 |
| Copyright terms: Public domain | W3C validator |