| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul02d | Unicode version | ||
| Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| mul01d.1 |
|
| Ref | Expression |
|---|---|
| mul02d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul01d.1 |
. 2
| |
| 2 | mul02 8489 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-setind 4598 ax-resscn 8047 ax-1cn 8048 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-distr 8059 ax-i2m1 8060 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-iota 5246 df-fun 5287 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-sub 8275 |
| This theorem is referenced by: mulneg1 8497 mulap0r 8718 mulap0 8757 un0mulcl 9359 mul2lt0rgt0 9912 mul2lt0np 9915 lincmb01cmp 10155 iccf1o 10156 bcval5 10940 hashxp 11003 remul2 11269 immul2 11276 fsumconst 11850 binomlem 11879 fprodeq0 12013 fprodeq0g 12034 efne0 12074 dvds0 12202 mulmoddvds 12259 mulgcd 12422 bezoutr1 12439 lcmgcd 12485 qnumgt0 12605 pcexp 12717 mulgnn0ass 13579 dvmptcmulcn 15278 dvef 15284 ply1termlem 15299 plyaddlem1 15304 plymullem1 15305 plycoeid3 15314 sin0pilem1 15338 sinhalfpip 15377 sinhalfpim 15378 coshalfpip 15379 coshalfpim 15380 lgsdir2 15595 lgsdir 15597 lgsdirnn0 15609 lgsdinn0 15610 lgsquad2lem2 15644 |
| Copyright terms: Public domain | W3C validator |