| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul02 | GIF version | ||
| Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 10-Aug-1999.) |
| Ref | Expression |
|---|---|
| mul02 | ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8126 | . . . 4 ⊢ 0 ∈ ℂ | |
| 2 | 1 | subidi 8405 | . . 3 ⊢ (0 − 0) = 0 |
| 3 | 2 | oveq1i 6004 | . 2 ⊢ ((0 − 0) · 𝐴) = (0 · 𝐴) |
| 4 | subdir 8520 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((0 − 0) · 𝐴) = ((0 · 𝐴) − (0 · 𝐴))) | |
| 5 | 1, 1, 4 | mp3an12 1361 | . . 3 ⊢ (𝐴 ∈ ℂ → ((0 − 0) · 𝐴) = ((0 · 𝐴) − (0 · 𝐴))) |
| 6 | mulcl 8114 | . . . . 5 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 · 𝐴) ∈ ℂ) | |
| 7 | 6 | subidd 8433 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((0 · 𝐴) − (0 · 𝐴)) = 0) |
| 8 | 1, 7 | mpan 424 | . . 3 ⊢ (𝐴 ∈ ℂ → ((0 · 𝐴) − (0 · 𝐴)) = 0) |
| 9 | 5, 8 | eqtrd 2262 | . 2 ⊢ (𝐴 ∈ ℂ → ((0 − 0) · 𝐴) = 0) |
| 10 | 3, 9 | eqtr3id 2276 | 1 ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 (class class class)co 5994 ℂcc 7985 0cc0 7987 · cmul 7992 − cmin 8305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4626 ax-resscn 8079 ax-1cn 8080 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-iota 5274 df-fun 5316 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-sub 8307 |
| This theorem is referenced by: mul02lem2 8522 mul01 8523 mul02i 8524 mul02d 8526 demoivreALT 12271 nnnn0modprm0 12764 cnfldmulg 14525 lgsne0 15702 |
| Copyright terms: Public domain | W3C validator |