![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mul02 | GIF version |
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 10-Aug-1999.) |
Ref | Expression |
---|---|
mul02 | ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7952 | . . . 4 ⊢ 0 ∈ ℂ | |
2 | 1 | subidi 8231 | . . 3 ⊢ (0 − 0) = 0 |
3 | 2 | oveq1i 5888 | . 2 ⊢ ((0 − 0) · 𝐴) = (0 · 𝐴) |
4 | subdir 8346 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((0 − 0) · 𝐴) = ((0 · 𝐴) − (0 · 𝐴))) | |
5 | 1, 1, 4 | mp3an12 1327 | . . 3 ⊢ (𝐴 ∈ ℂ → ((0 − 0) · 𝐴) = ((0 · 𝐴) − (0 · 𝐴))) |
6 | mulcl 7941 | . . . . 5 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 · 𝐴) ∈ ℂ) | |
7 | 6 | subidd 8259 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((0 · 𝐴) − (0 · 𝐴)) = 0) |
8 | 1, 7 | mpan 424 | . . 3 ⊢ (𝐴 ∈ ℂ → ((0 · 𝐴) − (0 · 𝐴)) = 0) |
9 | 5, 8 | eqtrd 2210 | . 2 ⊢ (𝐴 ∈ ℂ → ((0 − 0) · 𝐴) = 0) |
10 | 3, 9 | eqtr3id 2224 | 1 ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 (class class class)co 5878 ℂcc 7812 0cc0 7814 · cmul 7819 − cmin 8131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-setind 4538 ax-resscn 7906 ax-1cn 7907 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-mulcom 7915 ax-addass 7916 ax-distr 7918 ax-i2m1 7919 ax-0id 7922 ax-rnegex 7923 ax-cnre 7925 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-sub 8133 |
This theorem is referenced by: mul02lem2 8348 mul01 8349 mul02i 8350 mul02d 8352 demoivreALT 11784 nnnn0modprm0 12258 cnfldmulg 13610 lgsne0 14579 |
Copyright terms: Public domain | W3C validator |