ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul02 GIF version

Theorem mul02 8276
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 10-Aug-1999.)
Assertion
Ref Expression
mul02 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)

Proof of Theorem mul02
StepHypRef Expression
1 0cn 7882 . . . 4 0 ∈ ℂ
21subidi 8160 . . 3 (0 − 0) = 0
32oveq1i 5846 . 2 ((0 − 0) · 𝐴) = (0 · 𝐴)
4 subdir 8275 . . . 4 ((0 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((0 − 0) · 𝐴) = ((0 · 𝐴) − (0 · 𝐴)))
51, 1, 4mp3an12 1316 . . 3 (𝐴 ∈ ℂ → ((0 − 0) · 𝐴) = ((0 · 𝐴) − (0 · 𝐴)))
6 mulcl 7871 . . . . 5 ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 · 𝐴) ∈ ℂ)
76subidd 8188 . . . 4 ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((0 · 𝐴) − (0 · 𝐴)) = 0)
81, 7mpan 421 . . 3 (𝐴 ∈ ℂ → ((0 · 𝐴) − (0 · 𝐴)) = 0)
95, 8eqtrd 2197 . 2 (𝐴 ∈ ℂ → ((0 − 0) · 𝐴) = 0)
103, 9eqtr3id 2211 1 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1342  wcel 2135  (class class class)co 5836  cc 7742  0cc0 7744   · cmul 7749  cmin 8060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-setind 4508  ax-resscn 7836  ax-1cn 7837  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-sub 8062
This theorem is referenced by:  mul02lem2  8277  mul01  8278  mul02i  8279  mul02d  8281  demoivreALT  11700  nnnn0modprm0  12164
  Copyright terms: Public domain W3C validator