ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul2lt0rgt0 Unicode version

Theorem mul2lt0rgt0 9717
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.)
Hypotheses
Ref Expression
mul2lt0.1  |-  ( ph  ->  A  e.  RR )
mul2lt0.2  |-  ( ph  ->  B  e.  RR )
mul2lt0.3  |-  ( ph  ->  ( A  x.  B
)  <  0 )
Assertion
Ref Expression
mul2lt0rgt0  |-  ( (
ph  /\  0  <  B )  ->  A  <  0 )

Proof of Theorem mul2lt0rgt0
StepHypRef Expression
1 mul2lt0.3 . . . 4  |-  ( ph  ->  ( A  x.  B
)  <  0 )
21adantr 274 . . 3  |-  ( (
ph  /\  0  <  B )  ->  ( A  x.  B )  <  0
)
3 mul2lt0.2 . . . . . 6  |-  ( ph  ->  B  e.  RR )
43adantr 274 . . . . 5  |-  ( (
ph  /\  0  <  B )  ->  B  e.  RR )
54recnd 7948 . . . 4  |-  ( (
ph  /\  0  <  B )  ->  B  e.  CC )
65mul02d 8311 . . 3  |-  ( (
ph  /\  0  <  B )  ->  ( 0  x.  B )  =  0 )
72, 6breqtrrd 4017 . 2  |-  ( (
ph  /\  0  <  B )  ->  ( A  x.  B )  <  (
0  x.  B ) )
8 mul2lt0.1 . . . 4  |-  ( ph  ->  A  e.  RR )
98adantr 274 . . 3  |-  ( (
ph  /\  0  <  B )  ->  A  e.  RR )
10 0red 7921 . . 3  |-  ( (
ph  /\  0  <  B )  ->  0  e.  RR )
11 simpr 109 . . . 4  |-  ( (
ph  /\  0  <  B )  ->  0  <  B )
124, 11elrpd 9650 . . 3  |-  ( (
ph  /\  0  <  B )  ->  B  e.  RR+ )
139, 10, 12ltmul1d 9695 . 2  |-  ( (
ph  /\  0  <  B )  ->  ( A  <  0  <->  ( A  x.  B )  <  (
0  x.  B ) ) )
147, 13mpbird 166 1  |-  ( (
ph  /\  0  <  B )  ->  A  <  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   RRcr 7773   0cc0 7774    x. cmul 7779    < clt 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltadd 7890  ax-pre-mulgt0 7891
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-ltxr 7959  df-sub 8092  df-neg 8093  df-rp 9611
This theorem is referenced by:  mul2lt0lgt0  9719
  Copyright terms: Public domain W3C validator