ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul2lt0rlt0 Unicode version

Theorem mul2lt0rlt0 9831
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.)
Hypotheses
Ref Expression
mul2lt0.1  |-  ( ph  ->  A  e.  RR )
mul2lt0.2  |-  ( ph  ->  B  e.  RR )
mul2lt0.3  |-  ( ph  ->  ( A  x.  B
)  <  0 )
Assertion
Ref Expression
mul2lt0rlt0  |-  ( (
ph  /\  B  <  0 )  ->  0  <  A )

Proof of Theorem mul2lt0rlt0
StepHypRef Expression
1 mul2lt0.1 . . . . . 6  |-  ( ph  ->  A  e.  RR )
2 mul2lt0.2 . . . . . 6  |-  ( ph  ->  B  e.  RR )
31, 2remulcld 8055 . . . . 5  |-  ( ph  ->  ( A  x.  B
)  e.  RR )
43adantr 276 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  ( A  x.  B )  e.  RR )
5 0red 8025 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  0  e.  RR )
62adantr 276 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  B  e.  RR )
7 simpr 110 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  B  <  0 )
86, 7negelrpd 9760 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u B  e.  RR+ )
9 mul2lt0.3 . . . . 5  |-  ( ph  ->  ( A  x.  B
)  <  0 )
109adantr 276 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  ( A  x.  B )  <  0 )
114, 5, 8, 10ltdiv1dd 9826 . . 3  |-  ( (
ph  /\  B  <  0 )  ->  (
( A  x.  B
)  /  -u B
)  <  ( 0  /  -u B ) )
121recnd 8053 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
1312adantr 276 . . . . . 6  |-  ( (
ph  /\  B  <  0 )  ->  A  e.  CC )
142recnd 8053 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
1514adantr 276 . . . . . 6  |-  ( (
ph  /\  B  <  0 )  ->  B  e.  CC )
1613, 15mulcld 8045 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  ( A  x.  B )  e.  CC )
176, 7lt0ap0d 8673 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  B #  0 )
1816, 15, 17divneg2apd 8828 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u (
( A  x.  B
)  /  B )  =  ( ( A  x.  B )  /  -u B ) )
1913, 15, 17divcanap4d 8820 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  (
( A  x.  B
)  /  B )  =  A )
2019negeqd 8219 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u (
( A  x.  B
)  /  B )  =  -u A )
2118, 20eqtr3d 2231 . . 3  |-  ( (
ph  /\  B  <  0 )  ->  (
( A  x.  B
)  /  -u B
)  =  -u A
)
2215negcld 8322 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u B  e.  CC )
2315, 17negap0d 8655 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u B #  0 )
2422, 23div0apd 8811 . . 3  |-  ( (
ph  /\  B  <  0 )  ->  (
0  /  -u B
)  =  0 )
2511, 21, 243brtr3d 4064 . 2  |-  ( (
ph  /\  B  <  0 )  ->  -u A  <  0 )
261adantr 276 . . 3  |-  ( (
ph  /\  B  <  0 )  ->  A  e.  RR )
2726lt0neg2d 8540 . 2  |-  ( (
ph  /\  B  <  0 )  ->  (
0  <  A  <->  -u A  <  0 ) )
2825, 27mpbird 167 1  |-  ( (
ph  /\  B  <  0 )  ->  0  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   CCcc 7875   RRcr 7876   0cc0 7877    x. cmul 7882    < clt 8059   -ucneg 8196    / cdiv 8696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697  df-rp 9726
This theorem is referenced by:  mul2lt0llt0  9833
  Copyright terms: Public domain W3C validator