ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul2lt0rlt0 Unicode version

Theorem mul2lt0rlt0 9863
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.)
Hypotheses
Ref Expression
mul2lt0.1  |-  ( ph  ->  A  e.  RR )
mul2lt0.2  |-  ( ph  ->  B  e.  RR )
mul2lt0.3  |-  ( ph  ->  ( A  x.  B
)  <  0 )
Assertion
Ref Expression
mul2lt0rlt0  |-  ( (
ph  /\  B  <  0 )  ->  0  <  A )

Proof of Theorem mul2lt0rlt0
StepHypRef Expression
1 mul2lt0.1 . . . . . 6  |-  ( ph  ->  A  e.  RR )
2 mul2lt0.2 . . . . . 6  |-  ( ph  ->  B  e.  RR )
31, 2remulcld 8085 . . . . 5  |-  ( ph  ->  ( A  x.  B
)  e.  RR )
43adantr 276 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  ( A  x.  B )  e.  RR )
5 0red 8055 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  0  e.  RR )
62adantr 276 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  B  e.  RR )
7 simpr 110 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  B  <  0 )
86, 7negelrpd 9792 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u B  e.  RR+ )
9 mul2lt0.3 . . . . 5  |-  ( ph  ->  ( A  x.  B
)  <  0 )
109adantr 276 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  ( A  x.  B )  <  0 )
114, 5, 8, 10ltdiv1dd 9858 . . 3  |-  ( (
ph  /\  B  <  0 )  ->  (
( A  x.  B
)  /  -u B
)  <  ( 0  /  -u B ) )
121recnd 8083 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
1312adantr 276 . . . . . 6  |-  ( (
ph  /\  B  <  0 )  ->  A  e.  CC )
142recnd 8083 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
1514adantr 276 . . . . . 6  |-  ( (
ph  /\  B  <  0 )  ->  B  e.  CC )
1613, 15mulcld 8075 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  ( A  x.  B )  e.  CC )
176, 7lt0ap0d 8704 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  B #  0 )
1816, 15, 17divneg2apd 8859 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u (
( A  x.  B
)  /  B )  =  ( ( A  x.  B )  /  -u B ) )
1913, 15, 17divcanap4d 8851 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  (
( A  x.  B
)  /  B )  =  A )
2019negeqd 8249 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u (
( A  x.  B
)  /  B )  =  -u A )
2118, 20eqtr3d 2239 . . 3  |-  ( (
ph  /\  B  <  0 )  ->  (
( A  x.  B
)  /  -u B
)  =  -u A
)
2215negcld 8352 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u B  e.  CC )
2315, 17negap0d 8686 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u B #  0 )
2422, 23div0apd 8842 . . 3  |-  ( (
ph  /\  B  <  0 )  ->  (
0  /  -u B
)  =  0 )
2511, 21, 243brtr3d 4074 . 2  |-  ( (
ph  /\  B  <  0 )  ->  -u A  <  0 )
261adantr 276 . . 3  |-  ( (
ph  /\  B  <  0 )  ->  A  e.  RR )
2726lt0neg2d 8571 . 2  |-  ( (
ph  /\  B  <  0 )  ->  (
0  <  A  <->  -u A  <  0 ) )
2825, 27mpbird 167 1  |-  ( (
ph  /\  B  <  0 )  ->  0  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2175   class class class wbr 4043  (class class class)co 5934   CCcc 7905   RRcr 7906   0cc0 7907    x. cmul 7912    < clt 8089   -ucneg 8226    / cdiv 8727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4338  df-po 4341  df-iso 4342  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-iota 5229  df-fun 5270  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-rp 9758
This theorem is referenced by:  mul2lt0llt0  9865
  Copyright terms: Public domain W3C validator