ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul2lt0rlt0 Unicode version

Theorem mul2lt0rlt0 9716
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.)
Hypotheses
Ref Expression
mul2lt0.1  |-  ( ph  ->  A  e.  RR )
mul2lt0.2  |-  ( ph  ->  B  e.  RR )
mul2lt0.3  |-  ( ph  ->  ( A  x.  B
)  <  0 )
Assertion
Ref Expression
mul2lt0rlt0  |-  ( (
ph  /\  B  <  0 )  ->  0  <  A )

Proof of Theorem mul2lt0rlt0
StepHypRef Expression
1 mul2lt0.1 . . . . . 6  |-  ( ph  ->  A  e.  RR )
2 mul2lt0.2 . . . . . 6  |-  ( ph  ->  B  e.  RR )
31, 2remulcld 7950 . . . . 5  |-  ( ph  ->  ( A  x.  B
)  e.  RR )
43adantr 274 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  ( A  x.  B )  e.  RR )
5 0red 7921 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  0  e.  RR )
62adantr 274 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  B  e.  RR )
7 simpr 109 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  B  <  0 )
86, 7negelrpd 9645 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u B  e.  RR+ )
9 mul2lt0.3 . . . . 5  |-  ( ph  ->  ( A  x.  B
)  <  0 )
109adantr 274 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  ( A  x.  B )  <  0 )
114, 5, 8, 10ltdiv1dd 9711 . . 3  |-  ( (
ph  /\  B  <  0 )  ->  (
( A  x.  B
)  /  -u B
)  <  ( 0  /  -u B ) )
121recnd 7948 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
1312adantr 274 . . . . . 6  |-  ( (
ph  /\  B  <  0 )  ->  A  e.  CC )
142recnd 7948 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
1514adantr 274 . . . . . 6  |-  ( (
ph  /\  B  <  0 )  ->  B  e.  CC )
1613, 15mulcld 7940 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  ( A  x.  B )  e.  CC )
176, 7lt0ap0d 8568 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  B #  0 )
1816, 15, 17divneg2apd 8721 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u (
( A  x.  B
)  /  B )  =  ( ( A  x.  B )  /  -u B ) )
1913, 15, 17divcanap4d 8713 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  (
( A  x.  B
)  /  B )  =  A )
2019negeqd 8114 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u (
( A  x.  B
)  /  B )  =  -u A )
2118, 20eqtr3d 2205 . . 3  |-  ( (
ph  /\  B  <  0 )  ->  (
( A  x.  B
)  /  -u B
)  =  -u A
)
2215negcld 8217 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u B  e.  CC )
2315, 17negap0d 8550 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u B #  0 )
2422, 23div0apd 8704 . . 3  |-  ( (
ph  /\  B  <  0 )  ->  (
0  /  -u B
)  =  0 )
2511, 21, 243brtr3d 4020 . 2  |-  ( (
ph  /\  B  <  0 )  ->  -u A  <  0 )
261adantr 274 . . 3  |-  ( (
ph  /\  B  <  0 )  ->  A  e.  RR )
2726lt0neg2d 8435 . 2  |-  ( (
ph  /\  B  <  0 )  ->  (
0  <  A  <->  -u A  <  0 ) )
2825, 27mpbird 166 1  |-  ( (
ph  /\  B  <  0 )  ->  0  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774    x. cmul 7779    < clt 7954   -ucneg 8091    / cdiv 8589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-rp 9611
This theorem is referenced by:  mul2lt0llt0  9718
  Copyright terms: Public domain W3C validator