ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul2lt0rlt0 Unicode version

Theorem mul2lt0rlt0 9901
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.)
Hypotheses
Ref Expression
mul2lt0.1  |-  ( ph  ->  A  e.  RR )
mul2lt0.2  |-  ( ph  ->  B  e.  RR )
mul2lt0.3  |-  ( ph  ->  ( A  x.  B
)  <  0 )
Assertion
Ref Expression
mul2lt0rlt0  |-  ( (
ph  /\  B  <  0 )  ->  0  <  A )

Proof of Theorem mul2lt0rlt0
StepHypRef Expression
1 mul2lt0.1 . . . . . 6  |-  ( ph  ->  A  e.  RR )
2 mul2lt0.2 . . . . . 6  |-  ( ph  ->  B  e.  RR )
31, 2remulcld 8123 . . . . 5  |-  ( ph  ->  ( A  x.  B
)  e.  RR )
43adantr 276 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  ( A  x.  B )  e.  RR )
5 0red 8093 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  0  e.  RR )
62adantr 276 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  B  e.  RR )
7 simpr 110 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  B  <  0 )
86, 7negelrpd 9830 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u B  e.  RR+ )
9 mul2lt0.3 . . . . 5  |-  ( ph  ->  ( A  x.  B
)  <  0 )
109adantr 276 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  ( A  x.  B )  <  0 )
114, 5, 8, 10ltdiv1dd 9896 . . 3  |-  ( (
ph  /\  B  <  0 )  ->  (
( A  x.  B
)  /  -u B
)  <  ( 0  /  -u B ) )
121recnd 8121 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
1312adantr 276 . . . . . 6  |-  ( (
ph  /\  B  <  0 )  ->  A  e.  CC )
142recnd 8121 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
1514adantr 276 . . . . . 6  |-  ( (
ph  /\  B  <  0 )  ->  B  e.  CC )
1613, 15mulcld 8113 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  ( A  x.  B )  e.  CC )
176, 7lt0ap0d 8742 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  B #  0 )
1816, 15, 17divneg2apd 8897 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u (
( A  x.  B
)  /  B )  =  ( ( A  x.  B )  /  -u B ) )
1913, 15, 17divcanap4d 8889 . . . . 5  |-  ( (
ph  /\  B  <  0 )  ->  (
( A  x.  B
)  /  B )  =  A )
2019negeqd 8287 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u (
( A  x.  B
)  /  B )  =  -u A )
2118, 20eqtr3d 2241 . . 3  |-  ( (
ph  /\  B  <  0 )  ->  (
( A  x.  B
)  /  -u B
)  =  -u A
)
2215negcld 8390 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u B  e.  CC )
2315, 17negap0d 8724 . . . 4  |-  ( (
ph  /\  B  <  0 )  ->  -u B #  0 )
2422, 23div0apd 8880 . . 3  |-  ( (
ph  /\  B  <  0 )  ->  (
0  /  -u B
)  =  0 )
2511, 21, 243brtr3d 4082 . 2  |-  ( (
ph  /\  B  <  0 )  ->  -u A  <  0 )
261adantr 276 . . 3  |-  ( (
ph  /\  B  <  0 )  ->  A  e.  RR )
2726lt0neg2d 8609 . 2  |-  ( (
ph  /\  B  <  0 )  ->  (
0  <  A  <->  -u A  <  0 ) )
2825, 27mpbird 167 1  |-  ( (
ph  /\  B  <  0 )  ->  0  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2177   class class class wbr 4051  (class class class)co 5957   CCcc 7943   RRcr 7944   0cc0 7945    x. cmul 7950    < clt 8127   -ucneg 8264    / cdiv 8765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-po 4351  df-iso 4352  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-rp 9796
This theorem is referenced by:  mul2lt0llt0  9903
  Copyright terms: Public domain W3C validator