| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulasspig | Unicode version | ||
| Description: Multiplication of positive integers is associative. (Contributed by Jim Kingdon, 26-Aug-2019.) |
| Ref | Expression |
|---|---|
| mulasspig |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn 7404 |
. . 3
| |
| 2 | pinn 7404 |
. . 3
| |
| 3 | pinn 7404 |
. . 3
| |
| 4 | nnmass 6563 |
. . 3
| |
| 5 | 1, 2, 3, 4 | syl3an 1291 |
. 2
|
| 6 | mulclpi 7423 |
. . . . 5
| |
| 7 | mulpiord 7412 |
. . . . 5
| |
| 8 | 6, 7 | sylan 283 |
. . . 4
|
| 9 | mulpiord 7412 |
. . . . . 6
| |
| 10 | 9 | oveq1d 5949 |
. . . . 5
|
| 11 | 10 | adantr 276 |
. . . 4
|
| 12 | 8, 11 | eqtrd 2237 |
. . 3
|
| 13 | 12 | 3impa 1196 |
. 2
|
| 14 | mulclpi 7423 |
. . . . 5
| |
| 15 | mulpiord 7412 |
. . . . 5
| |
| 16 | 14, 15 | sylan2 286 |
. . . 4
|
| 17 | mulpiord 7412 |
. . . . . 6
| |
| 18 | 17 | oveq2d 5950 |
. . . . 5
|
| 19 | 18 | adantl 277 |
. . . 4
|
| 20 | 16, 19 | eqtrd 2237 |
. . 3
|
| 21 | 20 | 3impb 1201 |
. 2
|
| 22 | 5, 13, 21 | 3eqtr4d 2247 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-irdg 6446 df-oadd 6496 df-omul 6497 df-ni 7399 df-mi 7401 |
| This theorem is referenced by: enqer 7453 addcmpblnq 7462 mulcmpblnq 7463 ordpipqqs 7469 addassnqg 7477 mulassnqg 7479 mulcanenq 7480 distrnqg 7482 ltsonq 7493 ltanqg 7495 ltmnqg 7496 ltexnqq 7503 |
| Copyright terms: Public domain | W3C validator |