Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulasspig | Unicode version |
Description: Multiplication of positive integers is associative. (Contributed by Jim Kingdon, 26-Aug-2019.) |
Ref | Expression |
---|---|
mulasspig |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 7260 | . . 3 | |
2 | pinn 7260 | . . 3 | |
3 | pinn 7260 | . . 3 | |
4 | nnmass 6464 | . . 3 | |
5 | 1, 2, 3, 4 | syl3an 1275 | . 2 |
6 | mulclpi 7279 | . . . . 5 | |
7 | mulpiord 7268 | . . . . 5 | |
8 | 6, 7 | sylan 281 | . . . 4 |
9 | mulpiord 7268 | . . . . . 6 | |
10 | 9 | oveq1d 5866 | . . . . 5 |
11 | 10 | adantr 274 | . . . 4 |
12 | 8, 11 | eqtrd 2203 | . . 3 |
13 | 12 | 3impa 1189 | . 2 |
14 | mulclpi 7279 | . . . . 5 | |
15 | mulpiord 7268 | . . . . 5 | |
16 | 14, 15 | sylan2 284 | . . . 4 |
17 | mulpiord 7268 | . . . . . 6 | |
18 | 17 | oveq2d 5867 | . . . . 5 |
19 | 18 | adantl 275 | . . . 4 |
20 | 16, 19 | eqtrd 2203 | . . 3 |
21 | 20 | 3impb 1194 | . 2 |
22 | 5, 13, 21 | 3eqtr4d 2213 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 com 4572 (class class class)co 5851 comu 6391 cnpi 7223 cmi 7225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-irdg 6347 df-oadd 6397 df-omul 6398 df-ni 7255 df-mi 7257 |
This theorem is referenced by: enqer 7309 addcmpblnq 7318 mulcmpblnq 7319 ordpipqqs 7325 addassnqg 7333 mulassnqg 7335 mulcanenq 7336 distrnqg 7338 ltsonq 7349 ltanqg 7351 ltmnqg 7352 ltexnqq 7359 |
Copyright terms: Public domain | W3C validator |