ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulasspig Unicode version

Theorem mulasspig 6988
Description: Multiplication of positive integers is associative. (Contributed by Jim Kingdon, 26-Aug-2019.)
Assertion
Ref Expression
mulasspig  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  .N  B
)  .N  C )  =  ( A  .N  ( B  .N  C
) ) )

Proof of Theorem mulasspig
StepHypRef Expression
1 pinn 6965 . . 3  |-  ( A  e.  N.  ->  A  e.  om )
2 pinn 6965 . . 3  |-  ( B  e.  N.  ->  B  e.  om )
3 pinn 6965 . . 3  |-  ( C  e.  N.  ->  C  e.  om )
4 nnmass 6288 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  .o  B
)  .o  C )  =  ( A  .o  ( B  .o  C
) ) )
51, 2, 3, 4syl3an 1223 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  .o  B
)  .o  C )  =  ( A  .o  ( B  .o  C
) ) )
6 mulclpi 6984 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  e.  N. )
7 mulpiord 6973 . . . . 5  |-  ( ( ( A  .N  B
)  e.  N.  /\  C  e.  N. )  ->  ( ( A  .N  B )  .N  C
)  =  ( ( A  .N  B )  .o  C ) )
86, 7sylan 278 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  .N  B )  .N  C )  =  ( ( A  .N  B
)  .o  C ) )
9 mulpiord 6973 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )
109oveq1d 5705 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  .N  B )  .o  C
)  =  ( ( A  .o  B )  .o  C ) )
1110adantr 271 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  .N  B )  .o  C )  =  ( ( A  .o  B
)  .o  C ) )
128, 11eqtrd 2127 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  .N  B )  .N  C )  =  ( ( A  .o  B
)  .o  C ) )
13123impa 1141 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  .N  B
)  .N  C )  =  ( ( A  .o  B )  .o  C ) )
14 mulclpi 6984 . . . . 5  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  .N  C
)  e.  N. )
15 mulpiord 6973 . . . . 5  |-  ( ( A  e.  N.  /\  ( B  .N  C
)  e.  N. )  ->  ( A  .N  ( B  .N  C ) )  =  ( A  .o  ( B  .N  C
) ) )
1614, 15sylan2 281 . . . 4  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  .N  ( B  .N  C
) )  =  ( A  .o  ( B  .N  C ) ) )
17 mulpiord 6973 . . . . . 6  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  .N  C
)  =  ( B  .o  C ) )
1817oveq2d 5706 . . . . 5  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( A  .o  ( B  .N  C ) )  =  ( A  .o  ( B  .o  C
) ) )
1918adantl 272 . . . 4  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  .o  ( B  .N  C
) )  =  ( A  .o  ( B  .o  C ) ) )
2016, 19eqtrd 2127 . . 3  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  .N  ( B  .N  C
) )  =  ( A  .o  ( B  .o  C ) ) )
21203impb 1142 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  .N  ( B  .N  C ) )  =  ( A  .o  ( B  .o  C ) ) )
225, 13, 213eqtr4d 2137 1  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  .N  B
)  .N  C )  =  ( A  .N  ( B  .N  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 927    = wceq 1296    e. wcel 1445   omcom 4433  (class class class)co 5690    .o comu 6217   N.cnpi 6928    .N cmi 6930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-iord 4217  df-on 4219  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-oadd 6223  df-omul 6224  df-ni 6960  df-mi 6962
This theorem is referenced by:  enqer  7014  addcmpblnq  7023  mulcmpblnq  7024  ordpipqqs  7030  addassnqg  7038  mulassnqg  7040  mulcanenq  7041  distrnqg  7043  ltsonq  7054  ltanqg  7056  ltmnqg  7057  ltexnqq  7064
  Copyright terms: Public domain W3C validator