![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulpiord | GIF version |
Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.) |
Ref | Expression |
---|---|
mulpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4659 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ⟨𝐴, 𝐵⟩ ∈ (N × N)) | |
2 | fvres 5540 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ (N × N) → (( ·o ↾ (N × N))‘⟨𝐴, 𝐵⟩) = ( ·o ‘⟨𝐴, 𝐵⟩)) | |
3 | df-ov 5878 | . . . 4 ⊢ (𝐴 ·N 𝐵) = ( ·N ‘⟨𝐴, 𝐵⟩) | |
4 | df-mi 7305 | . . . . 5 ⊢ ·N = ( ·o ↾ (N × N)) | |
5 | 4 | fveq1i 5517 | . . . 4 ⊢ ( ·N ‘⟨𝐴, 𝐵⟩) = (( ·o ↾ (N × N))‘⟨𝐴, 𝐵⟩) |
6 | 3, 5 | eqtri 2198 | . . 3 ⊢ (𝐴 ·N 𝐵) = (( ·o ↾ (N × N))‘⟨𝐴, 𝐵⟩) |
7 | df-ov 5878 | . . 3 ⊢ (𝐴 ·o 𝐵) = ( ·o ‘⟨𝐴, 𝐵⟩) | |
8 | 2, 6, 7 | 3eqtr4g 2235 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ (N × N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
9 | 1, 8 | syl 14 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ⟨cop 3596 × cxp 4625 ↾ cres 4629 ‘cfv 5217 (class class class)co 5875 ·o comu 6415 Ncnpi 7271 ·N cmi 7273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-xp 4633 df-res 4639 df-iota 5179 df-fv 5225 df-ov 5878 df-mi 7305 |
This theorem is referenced by: mulidpi 7317 mulclpi 7327 mulcompig 7330 mulasspig 7331 distrpig 7332 mulcanpig 7334 ltmpig 7338 archnqq 7416 enq0enq 7430 addcmpblnq0 7442 mulcmpblnq0 7443 mulcanenq0ec 7444 addclnq0 7450 mulclnq0 7451 nqpnq0nq 7452 nqnq0a 7453 nqnq0m 7454 nq0m0r 7455 distrnq0 7458 addassnq0lemcl 7460 |
Copyright terms: Public domain | W3C validator |