| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulpiord | GIF version | ||
| Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.) |
| Ref | Expression |
|---|---|
| mulpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 4725 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 〈𝐴, 𝐵〉 ∈ (N × N)) | |
| 2 | fvres 5623 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (( ·o ↾ (N × N))‘〈𝐴, 𝐵〉) = ( ·o ‘〈𝐴, 𝐵〉)) | |
| 3 | df-ov 5970 | . . . 4 ⊢ (𝐴 ·N 𝐵) = ( ·N ‘〈𝐴, 𝐵〉) | |
| 4 | df-mi 7454 | . . . . 5 ⊢ ·N = ( ·o ↾ (N × N)) | |
| 5 | 4 | fveq1i 5600 | . . . 4 ⊢ ( ·N ‘〈𝐴, 𝐵〉) = (( ·o ↾ (N × N))‘〈𝐴, 𝐵〉) |
| 6 | 3, 5 | eqtri 2228 | . . 3 ⊢ (𝐴 ·N 𝐵) = (( ·o ↾ (N × N))‘〈𝐴, 𝐵〉) |
| 7 | df-ov 5970 | . . 3 ⊢ (𝐴 ·o 𝐵) = ( ·o ‘〈𝐴, 𝐵〉) | |
| 8 | 2, 6, 7 | 3eqtr4g 2265 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
| 9 | 1, 8 | syl 14 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 〈cop 3646 × cxp 4691 ↾ cres 4695 ‘cfv 5290 (class class class)co 5967 ·o comu 6523 Ncnpi 7420 ·N cmi 7422 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-res 4705 df-iota 5251 df-fv 5298 df-ov 5970 df-mi 7454 |
| This theorem is referenced by: mulidpi 7466 mulclpi 7476 mulcompig 7479 mulasspig 7480 distrpig 7481 mulcanpig 7483 ltmpig 7487 archnqq 7565 enq0enq 7579 addcmpblnq0 7591 mulcmpblnq0 7592 mulcanenq0ec 7593 addclnq0 7599 mulclnq0 7600 nqpnq0nq 7601 nqnq0a 7602 nqnq0m 7603 nq0m0r 7604 distrnq0 7607 addassnq0lemcl 7609 |
| Copyright terms: Public domain | W3C validator |