| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulpiord | GIF version | ||
| Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.) |
| Ref | Expression |
|---|---|
| mulpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 4751 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 〈𝐴, 𝐵〉 ∈ (N × N)) | |
| 2 | fvres 5651 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (( ·o ↾ (N × N))‘〈𝐴, 𝐵〉) = ( ·o ‘〈𝐴, 𝐵〉)) | |
| 3 | df-ov 6004 | . . . 4 ⊢ (𝐴 ·N 𝐵) = ( ·N ‘〈𝐴, 𝐵〉) | |
| 4 | df-mi 7493 | . . . . 5 ⊢ ·N = ( ·o ↾ (N × N)) | |
| 5 | 4 | fveq1i 5628 | . . . 4 ⊢ ( ·N ‘〈𝐴, 𝐵〉) = (( ·o ↾ (N × N))‘〈𝐴, 𝐵〉) |
| 6 | 3, 5 | eqtri 2250 | . . 3 ⊢ (𝐴 ·N 𝐵) = (( ·o ↾ (N × N))‘〈𝐴, 𝐵〉) |
| 7 | df-ov 6004 | . . 3 ⊢ (𝐴 ·o 𝐵) = ( ·o ‘〈𝐴, 𝐵〉) | |
| 8 | 2, 6, 7 | 3eqtr4g 2287 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
| 9 | 1, 8 | syl 14 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 〈cop 3669 × cxp 4717 ↾ cres 4721 ‘cfv 5318 (class class class)co 6001 ·o comu 6560 Ncnpi 7459 ·N cmi 7461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-res 4731 df-iota 5278 df-fv 5326 df-ov 6004 df-mi 7493 |
| This theorem is referenced by: mulidpi 7505 mulclpi 7515 mulcompig 7518 mulasspig 7519 distrpig 7520 mulcanpig 7522 ltmpig 7526 archnqq 7604 enq0enq 7618 addcmpblnq0 7630 mulcmpblnq0 7631 mulcanenq0ec 7632 addclnq0 7638 mulclnq0 7639 nqpnq0nq 7640 nqnq0a 7641 nqnq0m 7642 nq0m0r 7643 distrnq0 7646 addassnq0lemcl 7648 |
| Copyright terms: Public domain | W3C validator |