| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulpiord | GIF version | ||
| Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.) |
| Ref | Expression |
|---|---|
| mulpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 4696 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 〈𝐴, 𝐵〉 ∈ (N × N)) | |
| 2 | fvres 5585 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (( ·o ↾ (N × N))‘〈𝐴, 𝐵〉) = ( ·o ‘〈𝐴, 𝐵〉)) | |
| 3 | df-ov 5928 | . . . 4 ⊢ (𝐴 ·N 𝐵) = ( ·N ‘〈𝐴, 𝐵〉) | |
| 4 | df-mi 7392 | . . . . 5 ⊢ ·N = ( ·o ↾ (N × N)) | |
| 5 | 4 | fveq1i 5562 | . . . 4 ⊢ ( ·N ‘〈𝐴, 𝐵〉) = (( ·o ↾ (N × N))‘〈𝐴, 𝐵〉) |
| 6 | 3, 5 | eqtri 2217 | . . 3 ⊢ (𝐴 ·N 𝐵) = (( ·o ↾ (N × N))‘〈𝐴, 𝐵〉) |
| 7 | df-ov 5928 | . . 3 ⊢ (𝐴 ·o 𝐵) = ( ·o ‘〈𝐴, 𝐵〉) | |
| 8 | 2, 6, 7 | 3eqtr4g 2254 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
| 9 | 1, 8 | syl 14 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 〈cop 3626 × cxp 4662 ↾ cres 4666 ‘cfv 5259 (class class class)co 5925 ·o comu 6481 Ncnpi 7358 ·N cmi 7360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-res 4676 df-iota 5220 df-fv 5267 df-ov 5928 df-mi 7392 |
| This theorem is referenced by: mulidpi 7404 mulclpi 7414 mulcompig 7417 mulasspig 7418 distrpig 7419 mulcanpig 7421 ltmpig 7425 archnqq 7503 enq0enq 7517 addcmpblnq0 7529 mulcmpblnq0 7530 mulcanenq0ec 7531 addclnq0 7537 mulclnq0 7538 nqpnq0nq 7539 nqnq0a 7540 nqnq0m 7541 nq0m0r 7542 distrnq0 7545 addassnq0lemcl 7547 |
| Copyright terms: Public domain | W3C validator |