ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negid GIF version

Theorem negid 7708
Description: Addition of a number and its negative. (Contributed by NM, 14-Mar-2005.)
Assertion
Ref Expression
negid (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)

Proof of Theorem negid
StepHypRef Expression
1 df-neg 7635 . . 3 -𝐴 = (0 − 𝐴)
21oveq2i 5645 . 2 (𝐴 + -𝐴) = (𝐴 + (0 − 𝐴))
3 0cn 7459 . . 3 0 ∈ ℂ
4 pncan3 7669 . . 3 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 + (0 − 𝐴)) = 0)
53, 4mpan2 416 . 2 (𝐴 ∈ ℂ → (𝐴 + (0 − 𝐴)) = 0)
62, 5syl5eq 2132 1 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1289  wcel 1438  (class class class)co 5634  cc 7327  0cc0 7329   + caddc 7332  cmin 7632  -cneg 7633
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-setind 4343  ax-resscn 7416  ax-1cn 7417  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-addass 7426  ax-distr 7428  ax-i2m1 7429  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-iota 4967  df-fun 5004  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-sub 7634  df-neg 7635
This theorem is referenced by:  negidi  7730  negidd  7762  eqneg  8173  eqreznegel  9068  shftcan1  10233
  Copyright terms: Public domain W3C validator