| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pncan3 | Unicode version | ||
| Description: Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.) |
| Ref | Expression |
|---|---|
| pncan3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. 2
| |
| 2 | simpr 110 |
. . 3
| |
| 3 | simpl 109 |
. . 3
| |
| 4 | subcl 8345 |
. . . 4
| |
| 5 | 4 | ancoms 268 |
. . 3
|
| 6 | subadd 8349 |
. . 3
| |
| 7 | 2, 3, 5, 6 | syl3anc 1271 |
. 2
|
| 8 | 1, 7 | mpbii 148 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-resscn 8091 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 |
| This theorem is referenced by: npcan 8355 nncan 8375 npncan3 8384 negid 8393 pncan3i 8423 pncan3d 8460 subdi 8531 posdif 8602 fzonmapblen 10387 frecfzen2 10649 bernneq2 10883 hashfz 11043 swrdfv2 11195 addlenpfx 11223 ccatpfx 11233 isumshft 12001 dvdssubr 12350 dvef 15401 sincosq2sgn 15501 sincosq3sgn 15502 sincosq4sgn 15503 logdivlti 15555 |
| Copyright terms: Public domain | W3C validator |