ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pncan3 Unicode version

Theorem pncan3 8100
Description: Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.)
Assertion
Ref Expression
pncan3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  -  A ) )  =  B )

Proof of Theorem pncan3
StepHypRef Expression
1 eqid 2164 . 2  |-  ( B  -  A )  =  ( B  -  A
)
2 simpr 109 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
3 simpl 108 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
4 subcl 8091 . . . 4  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( B  -  A
)  e.  CC )
54ancoms 266 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  -  A
)  e.  CC )
6 subadd 8095 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC  /\  ( B  -  A )  e.  CC )  ->  (
( B  -  A
)  =  ( B  -  A )  <->  ( A  +  ( B  -  A ) )  =  B ) )
72, 3, 5, 6syl3anc 1227 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( B  -  A )  =  ( B  -  A )  <-> 
( A  +  ( B  -  A ) )  =  B ) )
81, 7mpbii 147 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  -  A ) )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135  (class class class)co 5839   CCcc 7745    + caddc 7750    - cmin 8063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4097  ax-pow 4150  ax-pr 4184  ax-setind 4511  ax-resscn 7839  ax-1cn 7840  ax-icn 7842  ax-addcl 7843  ax-addrcl 7844  ax-mulcl 7845  ax-addcom 7847  ax-addass 7849  ax-distr 7851  ax-i2m1 7852  ax-0id 7855  ax-rnegex 7856  ax-cnre 7858
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2726  df-sbc 2950  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-br 3980  df-opab 4041  df-id 4268  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-iota 5150  df-fun 5187  df-fv 5193  df-riota 5795  df-ov 5842  df-oprab 5843  df-mpo 5844  df-sub 8065
This theorem is referenced by:  npcan  8101  nncan  8121  npncan3  8130  negid  8139  pncan3i  8169  pncan3d  8206  subdi  8277  posdif  8347  fzonmapblen  10116  frecfzen2  10356  bernneq2  10570  hashfz  10728  isumshft  11425  dvdssubr  11773  dvef  13286  sincosq2sgn  13346  sincosq3sgn  13347  sincosq4sgn  13348  logdivlti  13400
  Copyright terms: Public domain W3C validator