Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pncan3 | Unicode version |
Description: Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.) |
Ref | Expression |
---|---|
pncan3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2164 | . 2 | |
2 | simpr 109 | . . 3 | |
3 | simpl 108 | . . 3 | |
4 | subcl 8091 | . . . 4 | |
5 | 4 | ancoms 266 | . . 3 |
6 | subadd 8095 | . . 3 | |
7 | 2, 3, 5, 6 | syl3anc 1227 | . 2 |
8 | 1, 7 | mpbii 147 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1342 wcel 2135 (class class class)co 5839 cc 7745 caddc 7750 cmin 8063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-14 2138 ax-ext 2146 ax-sep 4097 ax-pow 4150 ax-pr 4184 ax-setind 4511 ax-resscn 7839 ax-1cn 7840 ax-icn 7842 ax-addcl 7843 ax-addrcl 7844 ax-mulcl 7845 ax-addcom 7847 ax-addass 7849 ax-distr 7851 ax-i2m1 7852 ax-0id 7855 ax-rnegex 7856 ax-cnre 7858 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2726 df-sbc 2950 df-dif 3116 df-un 3118 df-in 3120 df-ss 3127 df-pw 3558 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-br 3980 df-opab 4041 df-id 4268 df-xp 4607 df-rel 4608 df-cnv 4609 df-co 4610 df-dm 4611 df-iota 5150 df-fun 5187 df-fv 5193 df-riota 5795 df-ov 5842 df-oprab 5843 df-mpo 5844 df-sub 8065 |
This theorem is referenced by: npcan 8101 nncan 8121 npncan3 8130 negid 8139 pncan3i 8169 pncan3d 8206 subdi 8277 posdif 8347 fzonmapblen 10116 frecfzen2 10356 bernneq2 10570 hashfz 10728 isumshft 11425 dvdssubr 11773 dvef 13286 sincosq2sgn 13346 sincosq3sgn 13347 sincosq4sgn 13348 logdivlti 13400 |
Copyright terms: Public domain | W3C validator |