ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abs2difabs Unicode version

Theorem abs2difabs 11136
Description: Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.)
Assertion
Ref Expression
abs2difabs  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  (
( abs `  A
)  -  ( abs `  B ) ) )  <_  ( abs `  ( A  -  B )
) )

Proof of Theorem abs2difabs
StepHypRef Expression
1 abs2dif 11134 . . . 4  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( ( abs `  B
)  -  ( abs `  A ) )  <_ 
( abs `  ( B  -  A )
) )
21ancoms 268 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  B
)  -  ( abs `  A ) )  <_ 
( abs `  ( B  -  A )
) )
3 abscl 11079 . . . . 5  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
43recnd 8005 . . . 4  |-  ( A  e.  CC  ->  ( abs `  A )  e.  CC )
5 abscl 11079 . . . . 5  |-  ( B  e.  CC  ->  ( abs `  B )  e.  RR )
65recnd 8005 . . . 4  |-  ( B  e.  CC  ->  ( abs `  B )  e.  CC )
7 negsubdi2 8235 . . . 4  |-  ( ( ( abs `  A
)  e.  CC  /\  ( abs `  B )  e.  CC )  ->  -u ( ( abs `  A
)  -  ( abs `  B ) )  =  ( ( abs `  B
)  -  ( abs `  A ) ) )
84, 6, 7syl2an 289 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( ( abs `  A )  -  ( abs `  B ) )  =  ( ( abs `  B )  -  ( abs `  A ) ) )
9 abssub 11129 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  -  B )
)  =  ( abs `  ( B  -  A
) ) )
102, 8, 93brtr4d 4050 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( ( abs `  A )  -  ( abs `  B ) )  <_  ( abs `  ( A  -  B )
) )
11 abs2dif 11134 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
)  -  ( abs `  B ) )  <_ 
( abs `  ( A  -  B )
) )
12 resubcl 8240 . . . . 5  |-  ( ( ( abs `  A
)  e.  RR  /\  ( abs `  B )  e.  RR )  -> 
( ( abs `  A
)  -  ( abs `  B ) )  e.  RR )
133, 5, 12syl2an 289 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
)  -  ( abs `  B ) )  e.  RR )
14 subcl 8175 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
15 abscl 11079 . . . . 5  |-  ( ( A  -  B )  e.  CC  ->  ( abs `  ( A  -  B ) )  e.  RR )
1614, 15syl 14 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  -  B )
)  e.  RR )
17 absle 11117 . . . 4  |-  ( ( ( ( abs `  A
)  -  ( abs `  B ) )  e.  RR  /\  ( abs `  ( A  -  B
) )  e.  RR )  ->  ( ( abs `  ( ( abs `  A
)  -  ( abs `  B ) ) )  <_  ( abs `  ( A  -  B )
)  <->  ( -u ( abs `  ( A  -  B ) )  <_ 
( ( abs `  A
)  -  ( abs `  B ) )  /\  ( ( abs `  A
)  -  ( abs `  B ) )  <_ 
( abs `  ( A  -  B )
) ) ) )
1813, 16, 17syl2anc 411 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  (
( abs `  A
)  -  ( abs `  B ) ) )  <_  ( abs `  ( A  -  B )
)  <->  ( -u ( abs `  ( A  -  B ) )  <_ 
( ( abs `  A
)  -  ( abs `  B ) )  /\  ( ( abs `  A
)  -  ( abs `  B ) )  <_ 
( abs `  ( A  -  B )
) ) ) )
19 lenegcon1 8442 . . . . 5  |-  ( ( ( ( abs `  A
)  -  ( abs `  B ) )  e.  RR  /\  ( abs `  ( A  -  B
) )  e.  RR )  ->  ( -u (
( abs `  A
)  -  ( abs `  B ) )  <_ 
( abs `  ( A  -  B )
)  <->  -u ( abs `  ( A  -  B )
)  <_  ( ( abs `  A )  -  ( abs `  B ) ) ) )
2013, 16, 19syl2anc 411 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u ( ( abs `  A )  -  ( abs `  B
) )  <_  ( abs `  ( A  -  B ) )  <->  -u ( abs `  ( A  -  B
) )  <_  (
( abs `  A
)  -  ( abs `  B ) ) ) )
2120anbi1d 465 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( -u (
( abs `  A
)  -  ( abs `  B ) )  <_ 
( abs `  ( A  -  B )
)  /\  ( ( abs `  A )  -  ( abs `  B ) )  <_  ( abs `  ( A  -  B
) ) )  <->  ( -u ( abs `  ( A  -  B ) )  <_ 
( ( abs `  A
)  -  ( abs `  B ) )  /\  ( ( abs `  A
)  -  ( abs `  B ) )  <_ 
( abs `  ( A  -  B )
) ) ) )
2218, 21bitr4d 191 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  (
( abs `  A
)  -  ( abs `  B ) ) )  <_  ( abs `  ( A  -  B )
)  <->  ( -u (
( abs `  A
)  -  ( abs `  B ) )  <_ 
( abs `  ( A  -  B )
)  /\  ( ( abs `  A )  -  ( abs `  B ) )  <_  ( abs `  ( A  -  B
) ) ) ) )
2310, 11, 22mpbir2and 946 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  (
( abs `  A
)  -  ( abs `  B ) ) )  <_  ( abs `  ( A  -  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   class class class wbr 4018   ` cfv 5231  (class class class)co 5891   CCcc 7828   RRcr 7829    <_ cle 8012    - cmin 8147   -ucneg 8148   abscabs 11025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7921  ax-resscn 7922  ax-1cn 7923  ax-1re 7924  ax-icn 7925  ax-addcl 7926  ax-addrcl 7927  ax-mulcl 7928  ax-mulrcl 7929  ax-addcom 7930  ax-mulcom 7931  ax-addass 7932  ax-mulass 7933  ax-distr 7934  ax-i2m1 7935  ax-0lt1 7936  ax-1rid 7937  ax-0id 7938  ax-rnegex 7939  ax-precex 7940  ax-cnre 7941  ax-pre-ltirr 7942  ax-pre-ltwlin 7943  ax-pre-lttrn 7944  ax-pre-apti 7945  ax-pre-ltadd 7946  ax-pre-mulgt0 7947  ax-pre-mulext 7948  ax-arch 7949  ax-caucvg 7950
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-frec 6410  df-pnf 8013  df-mnf 8014  df-xr 8015  df-ltxr 8016  df-le 8017  df-sub 8149  df-neg 8150  df-reap 8551  df-ap 8558  df-div 8649  df-inn 8939  df-2 8997  df-3 8998  df-4 8999  df-n0 9196  df-z 9273  df-uz 9548  df-rp 9673  df-seqfrec 10465  df-exp 10539  df-cj 10870  df-re 10871  df-im 10872  df-rsqrt 11026  df-abs 11027
This theorem is referenced by:  abs2difabsd  11227  abscn2  11342
  Copyright terms: Public domain W3C validator