ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abs2difabs Unicode version

Theorem abs2difabs 11036
Description: Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.)
Assertion
Ref Expression
abs2difabs  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  (
( abs `  A
)  -  ( abs `  B ) ) )  <_  ( abs `  ( A  -  B )
) )

Proof of Theorem abs2difabs
StepHypRef Expression
1 abs2dif 11034 . . . 4  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( ( abs `  B
)  -  ( abs `  A ) )  <_ 
( abs `  ( B  -  A )
) )
21ancoms 266 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  B
)  -  ( abs `  A ) )  <_ 
( abs `  ( B  -  A )
) )
3 abscl 10979 . . . . 5  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
43recnd 7918 . . . 4  |-  ( A  e.  CC  ->  ( abs `  A )  e.  CC )
5 abscl 10979 . . . . 5  |-  ( B  e.  CC  ->  ( abs `  B )  e.  RR )
65recnd 7918 . . . 4  |-  ( B  e.  CC  ->  ( abs `  B )  e.  CC )
7 negsubdi2 8148 . . . 4  |-  ( ( ( abs `  A
)  e.  CC  /\  ( abs `  B )  e.  CC )  ->  -u ( ( abs `  A
)  -  ( abs `  B ) )  =  ( ( abs `  B
)  -  ( abs `  A ) ) )
84, 6, 7syl2an 287 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( ( abs `  A )  -  ( abs `  B ) )  =  ( ( abs `  B )  -  ( abs `  A ) ) )
9 abssub 11029 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  -  B )
)  =  ( abs `  ( B  -  A
) ) )
102, 8, 93brtr4d 4008 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( ( abs `  A )  -  ( abs `  B ) )  <_  ( abs `  ( A  -  B )
) )
11 abs2dif 11034 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
)  -  ( abs `  B ) )  <_ 
( abs `  ( A  -  B )
) )
12 resubcl 8153 . . . . 5  |-  ( ( ( abs `  A
)  e.  RR  /\  ( abs `  B )  e.  RR )  -> 
( ( abs `  A
)  -  ( abs `  B ) )  e.  RR )
133, 5, 12syl2an 287 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
)  -  ( abs `  B ) )  e.  RR )
14 subcl 8088 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
15 abscl 10979 . . . . 5  |-  ( ( A  -  B )  e.  CC  ->  ( abs `  ( A  -  B ) )  e.  RR )
1614, 15syl 14 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  -  B )
)  e.  RR )
17 absle 11017 . . . 4  |-  ( ( ( ( abs `  A
)  -  ( abs `  B ) )  e.  RR  /\  ( abs `  ( A  -  B
) )  e.  RR )  ->  ( ( abs `  ( ( abs `  A
)  -  ( abs `  B ) ) )  <_  ( abs `  ( A  -  B )
)  <->  ( -u ( abs `  ( A  -  B ) )  <_ 
( ( abs `  A
)  -  ( abs `  B ) )  /\  ( ( abs `  A
)  -  ( abs `  B ) )  <_ 
( abs `  ( A  -  B )
) ) ) )
1813, 16, 17syl2anc 409 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  (
( abs `  A
)  -  ( abs `  B ) ) )  <_  ( abs `  ( A  -  B )
)  <->  ( -u ( abs `  ( A  -  B ) )  <_ 
( ( abs `  A
)  -  ( abs `  B ) )  /\  ( ( abs `  A
)  -  ( abs `  B ) )  <_ 
( abs `  ( A  -  B )
) ) ) )
19 lenegcon1 8355 . . . . 5  |-  ( ( ( ( abs `  A
)  -  ( abs `  B ) )  e.  RR  /\  ( abs `  ( A  -  B
) )  e.  RR )  ->  ( -u (
( abs `  A
)  -  ( abs `  B ) )  <_ 
( abs `  ( A  -  B )
)  <->  -u ( abs `  ( A  -  B )
)  <_  ( ( abs `  A )  -  ( abs `  B ) ) ) )
2013, 16, 19syl2anc 409 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u ( ( abs `  A )  -  ( abs `  B
) )  <_  ( abs `  ( A  -  B ) )  <->  -u ( abs `  ( A  -  B
) )  <_  (
( abs `  A
)  -  ( abs `  B ) ) ) )
2120anbi1d 461 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( -u (
( abs `  A
)  -  ( abs `  B ) )  <_ 
( abs `  ( A  -  B )
)  /\  ( ( abs `  A )  -  ( abs `  B ) )  <_  ( abs `  ( A  -  B
) ) )  <->  ( -u ( abs `  ( A  -  B ) )  <_ 
( ( abs `  A
)  -  ( abs `  B ) )  /\  ( ( abs `  A
)  -  ( abs `  B ) )  <_ 
( abs `  ( A  -  B )
) ) ) )
2218, 21bitr4d 190 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  (
( abs `  A
)  -  ( abs `  B ) ) )  <_  ( abs `  ( A  -  B )
)  <->  ( -u (
( abs `  A
)  -  ( abs `  B ) )  <_ 
( abs `  ( A  -  B )
)  /\  ( ( abs `  A )  -  ( abs `  B ) )  <_  ( abs `  ( A  -  B
) ) ) ) )
2310, 11, 22mpbir2and 933 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  (
( abs `  A
)  -  ( abs `  B ) ) )  <_  ( abs `  ( A  -  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   class class class wbr 3976   ` cfv 5182  (class class class)co 5836   CCcc 7742   RRcr 7743    <_ cle 7925    - cmin 8060   -ucneg 8061   abscabs 10925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-rp 9581  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927
This theorem is referenced by:  abs2difabsd  11127  abscn2  11242
  Copyright terms: Public domain W3C validator