![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negsubdi2 | GIF version |
Description: Distribution of negative over subtraction. (Contributed by NM, 4-Oct-1999.) |
Ref | Expression |
---|---|
negsubdi2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negsubdi 8215 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (-𝐴 + 𝐵)) | |
2 | negcl 8159 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
3 | addcom 8096 | . . 3 ⊢ ((-𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 + 𝐵) = (𝐵 + -𝐴)) | |
4 | 2, 3 | sylan 283 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 + 𝐵) = (𝐵 + -𝐴)) |
5 | negsub 8207 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + -𝐴) = (𝐵 − 𝐴)) | |
6 | 5 | ancoms 268 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + -𝐴) = (𝐵 − 𝐴)) |
7 | 1, 4, 6 | 3eqtrd 2214 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 (class class class)co 5877 ℂcc 7811 + caddc 7816 − cmin 8130 -cneg 8131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-setind 4538 ax-resscn 7905 ax-1cn 7906 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-sub 8132 df-neg 8133 |
This theorem is referenced by: neg2sub 8219 negsubdi2d 8286 subeqrev 8335 mulsub2 8361 div2subap 8796 elz2 9326 fzshftral 10110 sqsubswap 10582 abssub 11112 abs2difabs 11119 dvdsprmpweqle 12338 sin2pim 14319 cos2pim 14320 ptolemy 14330 |
Copyright terms: Public domain | W3C validator |