ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn2ge GIF version

Theorem nn2ge 9139
Description: There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.)
Assertion
Ref Expression
nn2ge ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nn2ge
StepHypRef Expression
1 nnaddcl 9126 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ)
2 0red 8143 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ∈ ℝ)
3 nnre 9113 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
43adantl 277 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
5 nngt0 9131 . . . . 5 (𝐵 ∈ ℕ → 0 < 𝐵)
65adantl 277 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
72, 4, 6ltled 8261 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐵)
8 nnre 9113 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
98adantr 276 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
109, 4addge01d 8676 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (0 ≤ 𝐵𝐴 ≤ (𝐴 + 𝐵)))
117, 10mpbid 147 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ≤ (𝐴 + 𝐵))
12 nngt0 9131 . . . . 5 (𝐴 ∈ ℕ → 0 < 𝐴)
1312adantr 276 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐴)
142, 9, 13ltled 8261 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐴)
154, 9addge02d 8677 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (0 ≤ 𝐴𝐵 ≤ (𝐴 + 𝐵)))
1614, 15mpbid 147 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ≤ (𝐴 + 𝐵))
17 breq2 4086 . . . 4 (𝑥 = (𝐴 + 𝐵) → (𝐴𝑥𝐴 ≤ (𝐴 + 𝐵)))
18 breq2 4086 . . . 4 (𝑥 = (𝐴 + 𝐵) → (𝐵𝑥𝐵 ≤ (𝐴 + 𝐵)))
1917, 18anbi12d 473 . . 3 (𝑥 = (𝐴 + 𝐵) → ((𝐴𝑥𝐵𝑥) ↔ (𝐴 ≤ (𝐴 + 𝐵) ∧ 𝐵 ≤ (𝐴 + 𝐵))))
2019rspcev 2907 . 2 (((𝐴 + 𝐵) ∈ ℕ ∧ (𝐴 ≤ (𝐴 + 𝐵) ∧ 𝐵 ≤ (𝐴 + 𝐵))) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
211, 11, 16, 20syl12anc 1269 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wrex 2509   class class class wbr 4082  (class class class)co 6000  cr 7994  0cc0 7995   + caddc 7998   < clt 8177  cle 8178  cn 9106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-iota 5277  df-fv 5325  df-ov 6003  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-inn 9107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator