ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn2ge GIF version

Theorem nn2ge 8925
Description: There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.)
Assertion
Ref Expression
nn2ge ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nn2ge
StepHypRef Expression
1 nnaddcl 8912 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ)
2 0red 7933 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ∈ ℝ)
3 nnre 8899 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
43adantl 277 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
5 nngt0 8917 . . . . 5 (𝐵 ∈ ℕ → 0 < 𝐵)
65adantl 277 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
72, 4, 6ltled 8050 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐵)
8 nnre 8899 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
98adantr 276 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
109, 4addge01d 8464 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (0 ≤ 𝐵𝐴 ≤ (𝐴 + 𝐵)))
117, 10mpbid 147 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ≤ (𝐴 + 𝐵))
12 nngt0 8917 . . . . 5 (𝐴 ∈ ℕ → 0 < 𝐴)
1312adantr 276 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐴)
142, 9, 13ltled 8050 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐴)
154, 9addge02d 8465 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (0 ≤ 𝐴𝐵 ≤ (𝐴 + 𝐵)))
1614, 15mpbid 147 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ≤ (𝐴 + 𝐵))
17 breq2 4002 . . . 4 (𝑥 = (𝐴 + 𝐵) → (𝐴𝑥𝐴 ≤ (𝐴 + 𝐵)))
18 breq2 4002 . . . 4 (𝑥 = (𝐴 + 𝐵) → (𝐵𝑥𝐵 ≤ (𝐴 + 𝐵)))
1917, 18anbi12d 473 . . 3 (𝑥 = (𝐴 + 𝐵) → ((𝐴𝑥𝐵𝑥) ↔ (𝐴 ≤ (𝐴 + 𝐵) ∧ 𝐵 ≤ (𝐴 + 𝐵))))
2019rspcev 2839 . 2 (((𝐴 + 𝐵) ∈ ℕ ∧ (𝐴 ≤ (𝐴 + 𝐵) ∧ 𝐵 ≤ (𝐴 + 𝐵))) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
211, 11, 16, 20syl12anc 1236 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146  wrex 2454   class class class wbr 3998  (class class class)co 5865  cr 7785  0cc0 7786   + caddc 7789   < clt 7966  cle 7967  cn 8892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-xp 4626  df-cnv 4628  df-iota 5170  df-fv 5216  df-ov 5868  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-inn 8893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator