| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn2ge | GIF version | ||
| Description: There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nn2ge | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnaddcl 9076 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ) | |
| 2 | 0red 8093 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ∈ ℝ) | |
| 3 | nnre 9063 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
| 4 | 3 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ) |
| 5 | nngt0 9081 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 0 < 𝐵) | |
| 6 | 5 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵) |
| 7 | 2, 4, 6 | ltled 8211 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐵) |
| 8 | nnre 9063 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 9 | 8 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 10 | 9, 4 | addge01d 8626 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐴 + 𝐵))) |
| 11 | 7, 10 | mpbid 147 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ≤ (𝐴 + 𝐵)) |
| 12 | nngt0 9081 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
| 13 | 12 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐴) |
| 14 | 2, 9, 13 | ltled 8211 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐴) |
| 15 | 4, 9 | addge02d 8627 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (0 ≤ 𝐴 ↔ 𝐵 ≤ (𝐴 + 𝐵))) |
| 16 | 14, 15 | mpbid 147 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ≤ (𝐴 + 𝐵)) |
| 17 | breq2 4055 | . . . 4 ⊢ (𝑥 = (𝐴 + 𝐵) → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ (𝐴 + 𝐵))) | |
| 18 | breq2 4055 | . . . 4 ⊢ (𝑥 = (𝐴 + 𝐵) → (𝐵 ≤ 𝑥 ↔ 𝐵 ≤ (𝐴 + 𝐵))) | |
| 19 | 17, 18 | anbi12d 473 | . . 3 ⊢ (𝑥 = (𝐴 + 𝐵) → ((𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥) ↔ (𝐴 ≤ (𝐴 + 𝐵) ∧ 𝐵 ≤ (𝐴 + 𝐵)))) |
| 20 | 19 | rspcev 2881 | . 2 ⊢ (((𝐴 + 𝐵) ∈ ℕ ∧ (𝐴 ≤ (𝐴 + 𝐵) ∧ 𝐵 ≤ (𝐴 + 𝐵))) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
| 21 | 1, 11, 16, 20 | syl12anc 1248 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 class class class wbr 4051 (class class class)co 5957 ℝcr 7944 0cc0 7945 + caddc 7948 < clt 8127 ≤ cle 8128 ℕcn 9056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-xp 4689 df-cnv 4691 df-iota 5241 df-fv 5288 df-ov 5960 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-inn 9057 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |