ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn2ge GIF version

Theorem nn2ge 9051
Description: There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.)
Assertion
Ref Expression
nn2ge ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nn2ge
StepHypRef Expression
1 nnaddcl 9038 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ)
2 0red 8055 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ∈ ℝ)
3 nnre 9025 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
43adantl 277 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
5 nngt0 9043 . . . . 5 (𝐵 ∈ ℕ → 0 < 𝐵)
65adantl 277 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
72, 4, 6ltled 8173 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐵)
8 nnre 9025 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
98adantr 276 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
109, 4addge01d 8588 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (0 ≤ 𝐵𝐴 ≤ (𝐴 + 𝐵)))
117, 10mpbid 147 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ≤ (𝐴 + 𝐵))
12 nngt0 9043 . . . . 5 (𝐴 ∈ ℕ → 0 < 𝐴)
1312adantr 276 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐴)
142, 9, 13ltled 8173 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐴)
154, 9addge02d 8589 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (0 ≤ 𝐴𝐵 ≤ (𝐴 + 𝐵)))
1614, 15mpbid 147 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ≤ (𝐴 + 𝐵))
17 breq2 4047 . . . 4 (𝑥 = (𝐴 + 𝐵) → (𝐴𝑥𝐴 ≤ (𝐴 + 𝐵)))
18 breq2 4047 . . . 4 (𝑥 = (𝐴 + 𝐵) → (𝐵𝑥𝐵 ≤ (𝐴 + 𝐵)))
1917, 18anbi12d 473 . . 3 (𝑥 = (𝐴 + 𝐵) → ((𝐴𝑥𝐵𝑥) ↔ (𝐴 ≤ (𝐴 + 𝐵) ∧ 𝐵 ≤ (𝐴 + 𝐵))))
2019rspcev 2876 . 2 (((𝐴 + 𝐵) ∈ ℕ ∧ (𝐴 ≤ (𝐴 + 𝐵) ∧ 𝐵 ≤ (𝐴 + 𝐵))) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
211, 11, 16, 20syl12anc 1247 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  wrex 2484   class class class wbr 4043  (class class class)co 5934  cr 7906  0cc0 7907   + caddc 7910   < clt 8089  cle 8090  cn 9018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-xp 4679  df-cnv 4681  df-iota 5229  df-fv 5276  df-ov 5937  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-inn 9019
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator