ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfninc Unicode version

Theorem nninfninc 7182
Description: All values beyond a zero in an ℕ sequence are zero. This is another way of stating that elements of ℕ are nonincreasing. (Contributed by Jim Kingdon, 12-Jul-2025.)
Hypotheses
Ref Expression
nninfninc.a  |-  ( ph  ->  A  e. )
nninfninc.x  |-  ( ph  ->  X  e.  om )
nninfninc.y  |-  ( ph  ->  Y  e.  om )
nninfninc.le  |-  ( ph  ->  X  C_  Y )
nninfninc.z  |-  ( ph  ->  ( A `  X
)  =  (/) )
Assertion
Ref Expression
nninfninc  |-  ( ph  ->  ( A `  Y
)  =  (/) )

Proof of Theorem nninfninc
Dummy variables  f  i  n  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfninc.le . 2  |-  ( ph  ->  X  C_  Y )
2 sseq2 3203 . . . 4  |-  ( n  =  Y  ->  ( X  C_  n  <->  X  C_  Y
) )
3 fveqeq2 5563 . . . 4  |-  ( n  =  Y  ->  (
( A `  n
)  =  (/)  <->  ( A `  Y )  =  (/) ) )
42, 3imbi12d 234 . . 3  |-  ( n  =  Y  ->  (
( X  C_  n  ->  ( A `  n
)  =  (/) )  <->  ( X  C_  Y  ->  ( A `  Y )  =  (/) ) ) )
5 sseq2 3203 . . . . . . . . 9  |-  ( w  =  (/)  ->  ( X 
C_  w  <->  X  C_  (/) ) )
65anbi2d 464 . . . . . . . 8  |-  ( w  =  (/)  ->  ( (
ph  /\  X  C_  w
)  <->  ( ph  /\  X  C_  (/) ) ) )
7 fveqeq2 5563 . . . . . . . 8  |-  ( w  =  (/)  ->  ( ( A `  w )  =  (/)  <->  ( A `  (/) )  =  (/) ) )
86, 7imbi12d 234 . . . . . . 7  |-  ( w  =  (/)  ->  ( ( ( ph  /\  X  C_  w )  ->  ( A `  w )  =  (/) )  <->  ( ( ph  /\  X  C_  (/) )  -> 
( A `  (/) )  =  (/) ) ) )
9 sseq2 3203 . . . . . . . . 9  |-  ( w  =  k  ->  ( X  C_  w  <->  X  C_  k
) )
109anbi2d 464 . . . . . . . 8  |-  ( w  =  k  ->  (
( ph  /\  X  C_  w )  <->  ( ph  /\  X  C_  k )
) )
11 fveqeq2 5563 . . . . . . . 8  |-  ( w  =  k  ->  (
( A `  w
)  =  (/)  <->  ( A `  k )  =  (/) ) )
1210, 11imbi12d 234 . . . . . . 7  |-  ( w  =  k  ->  (
( ( ph  /\  X  C_  w )  -> 
( A `  w
)  =  (/) )  <->  ( ( ph  /\  X  C_  k
)  ->  ( A `  k )  =  (/) ) ) )
13 sseq2 3203 . . . . . . . . 9  |-  ( w  =  suc  k  -> 
( X  C_  w  <->  X 
C_  suc  k )
)
1413anbi2d 464 . . . . . . . 8  |-  ( w  =  suc  k  -> 
( ( ph  /\  X  C_  w )  <->  ( ph  /\  X  C_  suc  k ) ) )
15 fveqeq2 5563 . . . . . . . 8  |-  ( w  =  suc  k  -> 
( ( A `  w )  =  (/)  <->  ( A `  suc  k )  =  (/) ) )
1614, 15imbi12d 234 . . . . . . 7  |-  ( w  =  suc  k  -> 
( ( ( ph  /\  X  C_  w )  ->  ( A `  w
)  =  (/) )  <->  ( ( ph  /\  X  C_  suc  k )  ->  ( A `  suc  k )  =  (/) ) ) )
17 sseq2 3203 . . . . . . . . 9  |-  ( w  =  n  ->  ( X  C_  w  <->  X  C_  n
) )
1817anbi2d 464 . . . . . . . 8  |-  ( w  =  n  ->  (
( ph  /\  X  C_  w )  <->  ( ph  /\  X  C_  n )
) )
19 fveqeq2 5563 . . . . . . . 8  |-  ( w  =  n  ->  (
( A `  w
)  =  (/)  <->  ( A `  n )  =  (/) ) )
2018, 19imbi12d 234 . . . . . . 7  |-  ( w  =  n  ->  (
( ( ph  /\  X  C_  w )  -> 
( A `  w
)  =  (/) )  <->  ( ( ph  /\  X  C_  n
)  ->  ( A `  n )  =  (/) ) ) )
21 ss0 3487 . . . . . . . . . 10  |-  ( X 
C_  (/)  ->  X  =  (/) )
2221adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  X  C_  (/) )  ->  X  =  (/) )
2322fveq2d 5558 . . . . . . . 8  |-  ( (
ph  /\  X  C_  (/) )  -> 
( A `  X
)  =  ( A `
 (/) ) )
24 nninfninc.z . . . . . . . . 9  |-  ( ph  ->  ( A `  X
)  =  (/) )
2524adantr 276 . . . . . . . 8  |-  ( (
ph  /\  X  C_  (/) )  -> 
( A `  X
)  =  (/) )
2623, 25eqtr3d 2228 . . . . . . 7  |-  ( (
ph  /\  X  C_  (/) )  -> 
( A `  (/) )  =  (/) )
27 suceq 4433 . . . . . . . . . . . . . 14  |-  ( i  =  k  ->  suc  i  =  suc  k )
2827fveq2d 5558 . . . . . . . . . . . . 13  |-  ( i  =  k  ->  ( A `  suc  i )  =  ( A `  suc  k ) )
29 fveq2 5554 . . . . . . . . . . . . 13  |-  ( i  =  k  ->  ( A `  i )  =  ( A `  k ) )
3028, 29sseq12d 3210 . . . . . . . . . . . 12  |-  ( i  =  k  ->  (
( A `  suc  i )  C_  ( A `  i )  <->  ( A `  suc  k
)  C_  ( A `  k ) ) )
31 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( ( k  e. 
om  /\  ( ( ph  /\  X  C_  k
)  ->  ( A `  k )  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  /\  X  e.  suc  k )  ->  ph )
32 nninfninc.a . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e. )
33 fveq1 5553 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  A  ->  (
f `  suc  i )  =  ( A `  suc  i ) )
34 fveq1 5553 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  A  ->  (
f `  i )  =  ( A `  i ) )
3533, 34sseq12d 3210 . . . . . . . . . . . . . . . . 17  |-  ( f  =  A  ->  (
( f `  suc  i )  C_  (
f `  i )  <->  ( A `  suc  i
)  C_  ( A `  i ) ) )
3635ralbidv 2494 . . . . . . . . . . . . . . . 16  |-  ( f  =  A  ->  ( A. i  e.  om  ( f `  suc  i )  C_  (
f `  i )  <->  A. i  e.  om  ( A `  suc  i ) 
C_  ( A `  i ) ) )
37 df-nninf 7179 . . . . . . . . . . . . . . . 16  |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
3836, 37elrab2 2919 . . . . . . . . . . . . . . 15  |-  ( A  e.  <->  ( A  e.  ( 2o 
^m  om )  /\  A. i  e.  om  ( A `  suc  i ) 
C_  ( A `  i ) ) )
3932, 38sylib 122 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  e.  ( 2o  ^m  om )  /\  A. i  e.  om  ( A `  suc  i
)  C_  ( A `  i ) ) )
4039simprd 114 . . . . . . . . . . . . 13  |-  ( ph  ->  A. i  e.  om  ( A `  suc  i
)  C_  ( A `  i ) )
4131, 40syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  ( ( ph  /\  X  C_  k
)  ->  ( A `  k )  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  /\  X  e.  suc  k )  ->  A. i  e.  om  ( A `  suc  i
)  C_  ( A `  i ) )
42 simpll 527 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  om  /\  ( ( ph  /\  X  C_  k )  -> 
( A `  k
)  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  ->  k  e.  om )
4342adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  ( ( ph  /\  X  C_  k
)  ->  ( A `  k )  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  /\  X  e.  suc  k )  ->  k  e.  om )
4430, 41, 43rspcdva 2869 . . . . . . . . . . 11  |-  ( ( ( ( k  e. 
om  /\  ( ( ph  /\  X  C_  k
)  ->  ( A `  k )  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  /\  X  e.  suc  k )  ->  ( A `  suc  k )  C_  ( A `  k )
)
45 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( k  e. 
om  /\  ( ( ph  /\  X  C_  k
)  ->  ( A `  k )  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  /\  X  e.  suc  k )  ->  X  e.  suc  k )
46 nninfninc.x . . . . . . . . . . . . . . . 16  |-  ( ph  ->  X  e.  om )
4746ad2antrl 490 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  om  /\  ( ( ph  /\  X  C_  k )  -> 
( A `  k
)  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  ->  X  e.  om )
4847adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( k  e. 
om  /\  ( ( ph  /\  X  C_  k
)  ->  ( A `  k )  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  /\  X  e.  suc  k )  ->  X  e.  om )
49 nnsssuc 6555 . . . . . . . . . . . . . 14  |-  ( ( X  e.  om  /\  k  e.  om )  ->  ( X  C_  k  <->  X  e.  suc  k ) )
5048, 43, 49syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( k  e. 
om  /\  ( ( ph  /\  X  C_  k
)  ->  ( A `  k )  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  /\  X  e.  suc  k )  ->  ( X  C_  k 
<->  X  e.  suc  k
) )
5145, 50mpbird 167 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  ( ( ph  /\  X  C_  k
)  ->  ( A `  k )  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  /\  X  e.  suc  k )  ->  X  C_  k
)
52 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( k  e. 
om  /\  ( ( ph  /\  X  C_  k
)  ->  ( A `  k )  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  /\  X  e.  suc  k )  ->  ( ( ph  /\  X  C_  k )  ->  ( A `  k
)  =  (/) ) )
5331, 51, 52mp2and 433 . . . . . . . . . . 11  |-  ( ( ( ( k  e. 
om  /\  ( ( ph  /\  X  C_  k
)  ->  ( A `  k )  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  /\  X  e.  suc  k )  ->  ( A `  k )  =  (/) )
5444, 53sseqtrd 3217 . . . . . . . . . 10  |-  ( ( ( ( k  e. 
om  /\  ( ( ph  /\  X  C_  k
)  ->  ( A `  k )  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  /\  X  e.  suc  k )  ->  ( A `  suc  k )  C_  (/) )
55 ss0 3487 . . . . . . . . . 10  |-  ( ( A `  suc  k
)  C_  (/)  ->  ( A `  suc  k )  =  (/) )
5654, 55syl 14 . . . . . . . . 9  |-  ( ( ( ( k  e. 
om  /\  ( ( ph  /\  X  C_  k
)  ->  ( A `  k )  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  /\  X  e.  suc  k )  ->  ( A `  suc  k )  =  (/) )
57 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( k  e. 
om  /\  ( ( ph  /\  X  C_  k
)  ->  ( A `  k )  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  /\  X  =  suc  k )  ->  X  =  suc  k )
5857fveq2d 5558 . . . . . . . . . 10  |-  ( ( ( ( k  e. 
om  /\  ( ( ph  /\  X  C_  k
)  ->  ( A `  k )  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  /\  X  =  suc  k )  ->  ( A `  X )  =  ( A `  suc  k
) )
59 simplrl 535 . . . . . . . . . . 11  |-  ( ( ( ( k  e. 
om  /\  ( ( ph  /\  X  C_  k
)  ->  ( A `  k )  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  /\  X  =  suc  k )  ->  ph )
6059, 24syl 14 . . . . . . . . . 10  |-  ( ( ( ( k  e. 
om  /\  ( ( ph  /\  X  C_  k
)  ->  ( A `  k )  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  /\  X  =  suc  k )  ->  ( A `  X )  =  (/) )
6158, 60eqtr3d 2228 . . . . . . . . 9  |-  ( ( ( ( k  e. 
om  /\  ( ( ph  /\  X  C_  k
)  ->  ( A `  k )  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  /\  X  =  suc  k )  ->  ( A `  suc  k )  =  (/) )
62 simprr 531 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\  ( ( ph  /\  X  C_  k )  -> 
( A `  k
)  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  ->  X  C_  suc  k )
63 peano2 4627 . . . . . . . . . . . . 13  |-  ( k  e.  om  ->  suc  k  e.  om )
6442, 63syl 14 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\  ( ( ph  /\  X  C_  k )  -> 
( A `  k
)  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  ->  suc  k  e. 
om )
65 nnsssuc 6555 . . . . . . . . . . . 12  |-  ( ( X  e.  om  /\  suc  k  e.  om )  ->  ( X  C_  suc  k  <->  X  e.  suc  suc  k ) )
6647, 64, 65syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\  ( ( ph  /\  X  C_  k )  -> 
( A `  k
)  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  ->  ( X  C_ 
suc  k  <->  X  e.  suc  suc  k ) )
6762, 66mpbid 147 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\  ( ( ph  /\  X  C_  k )  -> 
( A `  k
)  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  ->  X  e.  suc  suc  k )
68 elsuci 4434 . . . . . . . . . 10  |-  ( X  e.  suc  suc  k  ->  ( X  e.  suc  k  \/  X  =  suc  k ) )
6967, 68syl 14 . . . . . . . . 9  |-  ( ( ( k  e.  om  /\  ( ( ph  /\  X  C_  k )  -> 
( A `  k
)  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  ->  ( X  e.  suc  k  \/  X  =  suc  k ) )
7056, 61, 69mpjaodan 799 . . . . . . . 8  |-  ( ( ( k  e.  om  /\  ( ( ph  /\  X  C_  k )  -> 
( A `  k
)  =  (/) ) )  /\  ( ph  /\  X  C_  suc  k ) )  ->  ( A `  suc  k )  =  (/) )
7170exp31 364 . . . . . . 7  |-  ( k  e.  om  ->  (
( ( ph  /\  X  C_  k )  -> 
( A `  k
)  =  (/) )  -> 
( ( ph  /\  X  C_  suc  k )  ->  ( A `  suc  k )  =  (/) ) ) )
728, 12, 16, 20, 26, 71finds 4632 . . . . . 6  |-  ( n  e.  om  ->  (
( ph  /\  X  C_  n )  ->  ( A `  n )  =  (/) ) )
7372com12 30 . . . . 5  |-  ( (
ph  /\  X  C_  n
)  ->  ( n  e.  om  ->  ( A `  n )  =  (/) ) )
7473impancom 260 . . . 4  |-  ( (
ph  /\  n  e.  om )  ->  ( X  C_  n  ->  ( A `  n )  =  (/) ) )
7574ralrimiva 2567 . . 3  |-  ( ph  ->  A. n  e.  om  ( X  C_  n  -> 
( A `  n
)  =  (/) ) )
76 nninfninc.y . . 3  |-  ( ph  ->  Y  e.  om )
774, 75, 76rspcdva 2869 . 2  |-  ( ph  ->  ( X  C_  Y  ->  ( A `  Y
)  =  (/) ) )
781, 77mpd 13 1  |-  ( ph  ->  ( A `  Y
)  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   A.wral 2472    C_ wss 3153   (/)c0 3446   suc csuc 4396   omcom 4622   ` cfv 5254  (class class class)co 5918   2oc2o 6463    ^m cmap 6702  ℕxnninf 7178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-iota 5215  df-fv 5262  df-nninf 7179
This theorem is referenced by:  nninfctlemfo  12177
  Copyright terms: Public domain W3C validator